
CUDA LSD Radix Sort



Counting Sort: Histogram

NOTE: The histogram size depends on the 
maximum value in the input



Counting Sort: Offsets



Counting Sort: Scatter

for each elem in Input:

d = Offsets[elem]++

Output[d] = elem

NOTE: Counting Sort is Stable!



Least Significant Digit (LSD) Radix Sort

The idea of LSD Radix Sort 
is to repeatedly perform 
counting sort using as key 
the i-th digit, going from 
least significant to most 
significant. This works 
because Counting Sort is 
stable

NOTE: Using digits as keys, 
histograms are smaller



Implementation Details

● We sort arrays of 32 bit unsigned integers
● We sort by groups of R bits, from least to most significant

○ We support the following values for R: 1, 2, 4, 8
● We expect our input to have a number of elements that is a power of 2
● We expect our blocks to have dimensions which are a power of 2



LSD Radix Sort vs STD Sort (Comparison Based) CPU



CUDA LSD Radix Sort

We have seen that the key component to LSD Radix Sort is Counting Sort. We 
must find a way to parallelize Counting Sort. We can observe that

1. The computation of a histogram is trivially parallelizable ✅
2. The computation of a prefix sum is a form of scan, and as such, it is easy to 

parallelize ✅
3. The scatter phase is strictly sequential, here lies the problem ❌
Parallelizing LSD Radix Sort is not trivial. We need a novel approach

Harada, T., & Howes, L.W. (2011). Introduction to GPU Radix Sort.



CUDA LSD Radix Sort Pass

Given arrays A (input) and B (output) of size s and block dimension bdim 

1. Build Histograms. We split A into p = s / bdim blocks. Every block b has the 
task of building an histogram Hb (2R buckets) for its input elements. 
H1,H2,…,Hp are laid sequentially into H

2. Build Local and Global Offsets. At first we copy H into C
a. Local Offsets L. Every block b performs an exclusive prefix sum on Hb
b. Global Offsets G. We consider C as a p x 2R matrix. We transpose C into CT. We perform an 

exclusive prefix sum on CT. Finally we transpose again CT

3. Scatter.
a. Every block b sorts in place its input elements
b. Given a thread with index i and its input element n with key k
c. We compute the destination index d of n as: d = i - L[b][key] + G[b][key]
d. We write B[d] = n



CUDA LSD Radix Sort Pass Example: Build Histograms

s = 16, bdim = 4, R = 2



CUDA LSD Radix Sort Pass Example: Build Local Offsets

s = 16, bdim = 4, R = 2



CUDA LSD Radix Sort Pass Example: Build Global Offsets



CUDA LSD Radix Sort Pass Example: Scatter



Build Histograms: Implementation Details

● Split input by block
● Each block builds an histogram of its own input
● The block builds the histogram in shared memory
● We do this to avoid random global memory accesses
● We may have some bank conflicts (this is still better than random global 

memory writes)
● At the start we must zero initialize the shared memory
● To avoid race conditions we use atomic operations when we update the 

histogram
● At the end, the block copies the histogram from shared memory to global 

memory, resulting in aligned and coalescent global memory writes



Build Histograms: Performance



Parallel Prefix Sum

Given an input array A of size s and block dimension bdim

● If s ≤ bdim then we perform a block local prefix sum on A
● Otherwise we split A into p = s / bdim blocks
● Every block b performs a block prefix sum on its input
● Every block b has also the task of computing the block sum Zb. Z1,Z2,...,Zp 

are laid sequentially into Z
● We perform a parallel prefix sum on Z
● We concurrently add Z[i] to each element of block i + 1

Nguyen, H. (2007). GPU Gems 3.



Block Local Prefix Sum

● Let A be an input array
● We conceptually consider A to be a tree
● Up Sweep. We traverse the tree from leaves to root, computing partial sums 

at internal nodes. At the end, the root node (the last element of the array) 
holds the sum of all the elements

● Down Sweep. We insert zero at the root. We traverse the tree from root to 
leaves, building the scan in place. At every iteration, each node at the current 
level passes its own value to its left child, and the sum of its value an the 
former value of its left child to its right child



Block Local Prefix Sum: Up Sweep



Block Local Prefix Sum: Down Sweep



Parallel Prefix Sum: Implementation Details

● In our Block Local Prefix Sum, we load our input data into shared memory
● We perform the Up Sweep and Down Sweep phases on shared memory

○ This suffers from bank conflicts but it is still better than directly using global memory
● Finally we write the shared memory back to global memory, resulting in an 

aligned and coalesced global memory write
● Before performing the Parallel Prefix Sum, we determine the total number of 

block sums that we will be computing and preallocate an appropriate array in 
device memory

● The parallel add is trivial



Parallel Prefix Sum: Performance



In Place Sort - LSD Binary Radix Sort

Nguyen, H. (2007). 
GPU Gems 3.

Single pass example



LSD Binary Radix Sort: Implementation Details

● We load our input array into shared memory
● We perform R passes
● To restrict our shared memory usage

○ Each thread saves its current input value in a register
○ Each thread writes its inverted bit into the same shared memory we used to load our input
○ We perform our block local prefix sum on the shared memory
○ Each thread computes t using a register
○ Each thread computes d using a register
○ Each thread writes back in shared memory its input value depending on d



Scatter: Implementation Details

● We load our input, local offsets and global offsets into shared memory
● We use LSD Binary Radix Sort to sort in place our input elements loaded 

into shared memory. We don’t sort by value. We sort by key (R passes)
● We compute the destination index using a register
● We scatter the elements into the output array, in global memory
● Our global memory writes may not be aligned
● In a block, all input elements with the same keys are written in a coalesced 

way
● In a block, input elements with different keys cause random global memory 

writes



CUDA LSD Radix Sort: Implementation Details

● We perform 32 / R passes
● All kernels are launched on the default stream
● Since building the local and global offsets are independent tasks, we submit 

the kernels on two different non default streams
○ At the start we need a copy of our histograms

● When building the global offsets, we use a fast transpose kernel that uses 
shared memory to improve global memory accesses

○ https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/


CUDA LSD Radix Sort: Performance


