
Watch Out
DPS Lab Project - July 2024



Admin Server: Players

● The admin server maintains a list of all the registered players.
○ We use a ‘Players’ thread safe singleton.

● Multiple threads may access this list concurrently.
○ This is due to possibly simultaneous requests coming to the server.

● We may want to concurrently:
○ Check whether or not a player is already registered.
○ Register a new player.
○ Get the list of all registered players.

● We protect access to the data structure using synchronized methods of the 
‘Players’ singleton.

○ When returning the list of all registered players, we actually return a copy of the list.



Admin Server: Heartbeats

● The admin server maintains a list of all the heartbeat data points.
○ We use a ‘Heartbeats’ thread safe singleton.

● Multiple threads may access this list concurrently.
○ This is due to possibly simultaneous requests coming to the server.

● We may want to concurrently:
○ Add some new data points to the list.
○ Compute some statistics over the list.

● We protect access to the list using the list’s intrinsic lock.
● When adding new data points to the list, we first acquire the list’s lock and 

then release it only after all the additions are done.



Admin Server: Heartbeats Statistics

When computing statistics on the list:

● We acquire the list’s lock.
● Iterate over the list, copying all the data points necessary for the computation 

into another thread local temporary list.
● We release the list’s lock.
● We do the possibly lengthy computation on the thread local temporary list.



Admin Server: Synchronization Considerations

● We have two different independent singletons:
○ One for the players data structure.
○ Another for the heartbeats data structure.

● We tried to achieve a synchronization as fine grained as possible.
○ For example, we can add a new player while heartbeat statistics are being computed.

● We can also add new heartbeat data points while computing statistics.
○ We only block when copying the relevant data points to the thread local list.



Admin Server: REST API



Insertion of a Payer in the Network

As soon as a new Player process gets started:

● The process registers itself to the Admin Server as a new player.
● The player receives back the list of all the already registered players.

○ For each player, we have its id, its address, its port and its starting position on the pitch.
● The player broadcasts a greeting message to all the already registered 

players.
○ The greeting message contains the player’s id, the player’s address, the player’s port and the 

player’s starting position on the pitch.
● By doing this, we know that each player will eventually come to know all 

other players that are participating in the game.



Design of the P2P Network

● Each player maintains a list of all the other participating players.
● Thus, each player is able to directly communicate with all other players.

○ We use asynchronous unary gRPCs for all communications among players.
● On top of this list we define a ring overlay network.
● This overlay network is used for implementing the election and mutual 

exclusion algorithms.
● The ring is defined as follows:

○ The successor of a player p, with id k, is the player p’ whose id is the minimum of the set of all 
player ids that are greater than k.

○ If such minimum does not exist (i.e. k is the highest id), then the successor of p is the player p’ 
whose id is the minimum of the set of all player ids.



Seeker Election Algorithm: Game Start

● The algorithm is based on Chang and Roberts ring election.
● The algorithm starts as soon as a player receives a game start notification 

through MQTT.
● The notification is processed only if the player is Idle. Otherwise it is ignored.
● If the player considers itself a possible seeker:

○ It moves itself to a Voted state.
○ It sends an election message to the next player along the ring.

● The election message contains:
○ The player’s id.
○ The player’s starting position on the pitch.

● A player considers itself a possible seeker only if it is the closest to the home 
base, compared to all other players known to it.



Seeker Election Algorithm: On Election Receive

When a player receives an election message:

● If it is Idle, the player:
○ Moves itself to a Voted state.
○ It either forwards the election message or sends a new election message depending on who is a better 

candidate between itself and the one in the received election message.
● If it has already Voted:

○ If the received election message is the one that was previously sent by the player:
■ It means that the player is the Seeker.
■ The player sends a seeker message along the ring.
■ The seeker message contains the seeker’s id.

○ If the received election message is not the one that was previously sent by the player:
■ If the candidate in the message is better than the player, the player forwards the election message along 

the ring.
■ If the candidate in the message is worse than the player, the player does nothing, blocking the election 

message.
● In any other state, the player does nothing, blocking the election message.



Seeker Election Algorithm: On Seeker Receive

When a player receives a seeker message:

● If it is Idle:
○ The player missed its chance to vote and it is a Hider.
○ The player forwards the seeker message along the ring.

● If it has already Voted:
○ The seeker message cannot be its own. The player is thus a Hider.
○ The player forwards the seeker message along the ring.

● If it is the Seeker:
○ It must be that the id bundled together with the seeker message is the same as the player’s id.
○ It means that the seeker message went around the ring.
○ The player starts pursuing the other players.
○ The player starts the token ring mutual exclusion algorithm by sending a token along the 

ring.



Seeker Pursuit

● The pursuit logic is executed by a new thread.
● This thread is spawned as soon as the seeker message does a trip around 

the ring, coming back to the sender.
● The pursuit logic is as follows:

○ The Seeker keeps track of the set of all taggable players for this round of Watch Out.
■ It clears this set.
■ Then, it initializes it with the ids of all other players known to it.

○ While this set is not empty
■ It finds the closest taggable player to it.
■ It waits for an amount of time equal to the time required for it to reach said player.
■ After this amount of time has passed, if the pursued player is still taggable:

● It sends a tag message to it.
● It removes the player from the set of taggable players.

○ Once the set of taggable players is empty, the thread’s execution is over.



Token Ring Mutual Exclusion Algorithm (1)

When a player receives the token:

● If it is Idle.
○ It has skipped the election. It is a Hider.
○ Do the same thing a Hider would do (read below).

● If it is a Hider:
○ It tries to go for the home base.
○ Once that is done, it forwards the token along the ring.



Hider Going for the Home Base

● The Hider waits for an amount of time equal to the time required for it to 
reach the home base.

● After the wait expires, we either may have been tagged or not.
● Thus, the Hider checks its own state.
● If it is still a Hider, it means that it hasn’t been tagged yet.

○ It thus becomes Safe.
○ Waits for ten seconds.
○ After this amount of time has passed, it signals to all other players the fact that it is Safe by 

broadcasting a round leave message.
● If it has been Tagged during the wait, it does nothing.



Token Ring Mutual Exclusion Algorithm (2)

When a player receives the token:

● If it is a Seeker:
○ If there are still taggable players, it forwards the token along the ring.
○ If there are no more taggable players:

■ It blocks the token.
■ It becomes Idle
■ It signals to all other players that the current round is over by broadcasting a round end 

message.
● If it either is Safe or Tagged:

○ It forwards the token to the next player.



On Tag Receive

When a player receives a tag message:

● If it is Idle:
○ It becomes Tagged.
○ It broadcasts to all other players a round leave message.

● If it is a Hider:
○ It becomes Tagged.
○ It broadcasts to all other players a round leave message.
○ It notifies any possible waiting thread (i.e. the thread going for the home base).

● If it is Safe, it does nothing.



On Leave Round Receive & On Round End Receive

When a player receives a round leave message:

● It removes from the set of taggable players the sender of the message.

When a player receives a round end message:

● If the player is either Idle, Hider, Safe or Tagged:
○ It becomes Idle.

● Any other state is not contemplated.



Player Peer Synchronization Issues (1)

● All the payer’s shared state is bundled into a ‘Context’ singleton.
● All the messages coming to a player are handled by auxiliary threads.

○ When receiving a message Msg, the auxiliary thread handles it by invoking a onMsgReceive method 
on the Context singleton.

● We may have multiple threads concurrently accessing the player’s shared state.
○ We need to protect access to this shared state.
○ We do this by making as synchronized all the public methods of the Context singleton.

● This means that each auxiliary thread that handles a message:
○ First has to acquire the intrinsic lock of the Context singleton.
○ Only once the lock has been acquired, the message handling logic gets executed.
○ As soon as the handling logic has finished execution, the lock is released.

● This effectively translates to the fact that the player handles one message at a 
time.

○ There are some exceptions.



Player Peer Synchronization Issues (2)

● The first exception is when the player receives a custom text message from 
the admin client through MQTT.

○ In this case, we don’t need to access any shared state.
● The second exception is when the player goes for the home base.

○ This happens when the player receives the token and is either Idle or a Hider.
○ In this scenario, the message handling thread calls wait.
○ The Context singleton intrinsic lock is released during the wait.
○ Thus, other messages can be handled while the thread is waiting.
○ There are actually two calls to wait.

■ The first one can be notified by another thread handling a received tag message.
● In this way, if the player gets tagged, it wakes up immediately, instead of waiting 

until the time out.
■ The second one is never notified.



Player Peer Synchronization Issues (3)

● The Seeker player pursuit logic, for a given round, is executed by spawning a 
new thread that runs the seekOtherPlayers method belonging to the Context 
singleton.

● Since this method needs to access the player’s shared state, which can be 
modified by other concurrent threads, we need to mark is as synchronized.

● As we have stated earlier, seekOtherPlayers periodically calls wait.
● The Context singleton intrinsic lock is released during the wait.
● In this way, the Seeker is able to concurrently execute:

○ The pursuit logic.
○ Any other message handling logic.

● This wait is never notified.



Player Heart Rate Simulator and Sender 

● As soon as the player successfully registers itself with the admin server:
○ It starts a heart rate simulator thread.
○ It starts a heart rate sender thread.

● The heart rate simulator and sender threads share a buffer.
● The simulator thread acts as a producer: it puts data into the buffer.
● The sender thread acts as a consumer: it removes data from the buffer.
● We must protect access to this shared buffer.
● The buffer is also the component that implements the sliding window 

technique.



Player Heart Rate Buffer

● The buffer manages two lists:
○ The list of raw data points, produced by the heart rate simulator thread.
○ The list of aggregated data points, consumed by the heart rate sender thread.

● The buffer offers two methods:
○ addMeasurement.
○ readAllAndClean.



Player Heart Rate Buffer: addMeasurement

When adding a new raw data point:

● We first acquire the intrinsic lock of the raw list.
● We add the new data point to it.
● If it is possible to compute a new aggregated data point:

○ We compute the aggregated data point.
○ We acquire the intrinsic lock of the aggregated list.
○ We add the newly computed aggregated data point to said list.
○ We release the intrinsic lock of the aggregated list.
○ We remove the first four data points in the raw list.

● We release the intrinsic lock of the raw ist.



Player Heart Rate Buffer: readAllAndClean

When reading the aggregated data points in the buffer:

● We acquire the intrinsic lock of the aggregated list.
● We make a copy of said list.
● We clear the aggregated list, removing all data points in it.
● We release the lock.
● We return the copy we made of the aggregated list.



Heart Rate Buffer: Synchronization Considerations

● When the heart rate sender thread reads data points from the buffer:
○ Only the aggregated list’s intrinsic lock needs to be acquired.

● When the heart rate simulator thread adds data points to the buffer:
○ Most of the time, we only acquire the raw list’s intrinsic lock.
○ When we need to acquire also the aggregated list’s intrinsic lock, we do it just to add the newly 

computed aggregated data point, and then immediately release it.
● The producer and consumer threads block only when:

○ They write to and read from the buffer at the same time
○ The write leads to computing a new aggregated data point.


