Watch Out

DPS Lab Project - July 2024

Admin Server: Players

e The admin server maintains a list of all the registered players.
o We use a ‘Players’ thread safe singleton.

e Multiple threads may access this list concurrently.
o This is due to possibly simultaneous requests coming to the server.

e \We may want to concurrently:

o Check whether or not a player is already registered.
o Register a new player.
o Get the list of all registered players.

e \We protect access to the data structure using synchronized methods of the

‘Players’ singleton.
o When returning the list of all registered players, we actually return a copy of the list.

Admin Server: Heartbeats

e The admin server maintains a list of all the heartbeat data points.
o We use a ‘Heartbeats’ thread safe singleton.

e Multiple threads may access this list concurrently.
o This is due to possibly simultaneous requests coming to the server.

e \We may want to concurrently:

o Add some new data points to the list.
o Compute some statistics over the list.

e \We protect access to the list using the list’s intrinsic lock.
e \When adding new data points to the list, we first acquire the list’s lock and
then release it only after all the additions are done.

Admin Server: Heartbeats Statistics

When computing statistics on the list:

e We acquire the list’s lock.

e lterate over the list, copying all the data points necessary for the computation
into another thread local temporary list.

e \We release the list’s lock.

e We do the possibly lengthy computation on the thread local temporary list.

Admin Server: Synchronization Considerations

e \We have two different independent singletons:

o One for the players data structure.
o Another for the heartbeats data structure.

e \We tried to achieve a synchronization as fine grained as possible.
o For example, we can add a new player while heartbeat statistics are being computed.

e \Ve can also add new heartbeat data points while computing statistics.
o We only block when copying the relevant data points to the thread local list.

Admin Server: REST API

< HTTP URL »| =
PlayerList GET Iplayers
POST Iplayers/{id}/{address}/{port}
POST /heartbeats/{id}/{timestamp} HeartbeatList
HeartbeatStatResullt GET /heartbeats/avgoflastn/{id}/{n}

HeartbeatStatResullt GET /heartbeats/avgbetween/{t1}/{i2}

Insertion of a Payer in the Network

As soon as a new Player process gets started:

The process registers itself to the Admin Server as a new player.

The player receives back the list of all the already registered players.

o For each player, we have its id, its address, its port and its starting position on the pitch.
The player broadcasts a greeting message to all the already registered
players.

o The greeting message contains the player’s id, the player’s address, the player’s port and the
player’s starting position on the pitch.

By doing this, we know that each player will eventually come to know all
other players that are participating in the game.

Design of the P2P Network

e Each player maintains a list of all the other participating players.
e Thus, each player is able to directly communicate with all other players.
o We use asynchronous unary gRPCs for all communications among players.
e On top of this list we define a ring overlay network.
e This overlay network is used for implementing the election and mutual
exclusion algorithms.

e The ring is defined as follows:
o The successor of a player p, with id k, is the player p’ whose id is the minimum of the set of all
player ids that are greater than k.
o If such minimum does not exist (i.e. k is the highest id), then the successor of p is the player p’
whose id is the minimum of the set of all player ids.

Seeker Election Algorithm: Game Start

The algorithm is based on Chang and Roberts ring election.

e The algorithm starts as soon as a player receives a game start notification
through MQTT.

e The notification is processed only if the player is Idle. Otherwise it is ignored.

If the player considers itself a possible seeker:
o It movesitselfto a state.
o It sends an election message to the next player along the ring.
e The election message contains:
o The player’s id.
o The player’s starting position on the pitch.
e Aplayer considers itself a possible seeker only if it is the closest to the home

base, compared to all other players known to it.

Seeker Election Algorithm: On Election Receive

When a player receives an election message:

e Ifitis Idle, the player:
o Moves itselfto a state.
o It either forwards the election message or sends a new election message depending on who is a better
candidate between itself and the one in the received election message.

e [fit has already
o If the received election message is the one that was previously sent by the player:
m It means that the player is the Seeker.
m The player sends a seeker message along the ring.
m The seeker message contains the seeker’s id.
o If the received election message is not the one that was previously sent by the player:
m If the candidate in the message is better than the player, the player forwards the election message along
the ring.
m If the candidate in the message is worse than the player, the player does nothing, blocking the election
message.

e In any other state, the player does nothing, blocking the election message.

Seeker Election Algorithm: On Seeker Receive

When a player receives a seeker message:

o Ifitis Idle:
o The player missed its chance to vote and it is a Hider.
o The player forwards the seeker message along the ring.
e If it has already
o The seeker message cannot be its own. The player is thus a Hider.
o The player forwards the seeker message along the ring.
o Ifitis the Seeker:
It must be that the id bundled together with the seeker message is the same as the player’s id.
It means that the seeker message went around the ring.

The player starts pursuing the other players.
The player starts the token ring mutual exclusion algorithm by sending a token along the

ring.

o O O O

Seeker Pursuit

e The pursuit logic is executed by a new thread.
e This thread is spawned as soon as the seeker message does a trip around
the ring, coming back to the sender.

e The pursuit logic is as follows:
o The Seeker keeps track of the set of all taggable players for this round of Watch Out.
m It clears this set.
m Then, itinitializes it with the ids of all other players known to it.
o While this set is not empty
m It finds the closest taggable player to it.
m It waits for an amount of time equal to the time required for it to reach said player.
m After this amount of time has passed, if the pursued player is still taggable:
e |t sends a tag message to it.
e [t removes the player from the set of taggable players.
o Once the set of taggable players is empty, the thread’s execution is over.

Token Ring Mutual Exclusion Algorithm (1)

When a player receives the token:

o IfitislIdle.

o It has skipped the election. It is a Hider.

o Do the same thing a Hider would do (read below).
o Ifitis a Hider:

o Ittries to go for the home base.
o Once that is done, it forwards the token along the ring.

Hider Going for the Home Base

e The Hider waits for an amount of time equal to the time required for it to
reach the home base.

e After the wait expires, we either may have been tagged or not.

e Thus, the Hider checks its own state.

e |Ifitis still a Hider, it means that it hasn’t been tagged yet.
o Itthus becomes Safe.
o Waits for ten seconds.
o After this amount of time has passed, it signals to all other players the fact that it is Safe by
broadcasting a round leave message.

e |[fit has been Tagged during the wait, it does nothing.

Token Ring Mutual Exclusion Algorithm (2)

When a player receives the token:

o Ifitis a Seeker:
o If there are still taggable players, it forwards the token along the ring.
o If there are no more taggable players:
m [t blocks the token.
m It becomes Ildle
m [t signals to all other players that the current round is over by broadcasting a round end
message.

e |If it either is Safe or Tagged:

o It forwards the token to the next player.

On Tag Receive

When a player receives a tag message:

o Ifitisldle:

o It becomes Tagged.
o It broadcasts to all other players a round leave message.
e Ifitis a Hider:

o It becomes Tagged.
o It broadcasts to all other players a round leave message.
o It notifies any possible waiting thread (i.e. the thread going for the home base).

e Ifitis Safe, it does nothing.

On Leave Round Receive & On Round End Receive

When a player receives a round leave message:
e It removes from the set of taggable players the sender of the message.
When a player receives a round end message:

e |[f the player is either |dle, Hider, Safe or Tagged:

o It becomes ldle.
e Any other state is not contemplated.

Player Peer Synchronization Issues (1)

e All the payer’s shared state is bundled into a ‘Context’ singleton.

e All the messages coming to a player are handled by auxiliary threads.
o When receiving a message Msg, the auxiliary thread handles it by invoking a onMsgReceive method
on the Context singleton.
e \We may have multiple threads concurrently accessing the player’s shared state.
o We need to protect access to this shared state.
o We do this by making as synchronized all the public methods of the Context singleton.
e This means that each auxiliary thread that handles a message:
o First has to acquire the intrinsic lock of the Context singleton.
o Only once the lock has been acquired, the message handling logic gets executed.
o As soon as the handling logic has finished execution, the lock is released.

e This effectively translates to the fact that the player handles one message at a

time.
o There are some exceptions.

Player Peer Synchronization Issues (2)

e The first exception is when the player receives a custom text message from
the admin client through MQTT.

(@)

In this case, we don’t need to access any shared state.

e The second exception is when the player goes for the home base.

(@)

O O O O

This happens when the player receives the token and is either Idle or a Hider.
In this scenario, the message handling thread calls wait.
The Context singleton intrinsic lock is released during the wait.
Thus, other messages can be handled while the thread is waiting.
There are actually two calls to wait.

m The first one can be notified by another thread handling a received tag message.

e In this way, if the player gets tagged, it wakes up immediately, instead of waiting
until the time out.
m The second one is never notified.

Player Peer Synchronization Issues (3)

e The Seeker player pursuit logic, for a given round, is executed by spawning a
new thread that runs the seekOtherPlayers method belonging to the Context
singleton.

e Since this method needs to access the player’s shared state, which can be
modified by other concurrent threads, we need to mark is as synchronized.

e As we have stated earlier, seekOtherPlayers periodically calls wait.

The Context singleton intrinsic lock is released during the wait.

e In this way, the Seeker is able to concurrently execute:
o The pursuit logic.
o Any other message handling logic.

e This wait is never notified.

Player Heart Rate Simulator and Sender

e As soon as the player successfully registers itself with the admin server:

o It starts a heart rate simulator thread.
o It starts a heart rate sender thread.

The heart rate simulator and sender threads share a buffer.

The simulator thread acts as a producer: it puts data into the buffer.
The sender thread acts as a consumer: it removes data from the buffer.
We must protect access to this shared buffer.

The buffer is also the component that implements the sliding window
technique.

Player Heart Rate Buffer

e The buffer manages two lists:

o The list of raw data points, produced by the heart rate simulator thread.

o The list of aggregated data points, consumed by the heart rate sender thread.
e The buffer offers two methods:

o addMeasurement.
o readAllAndClean.

Player Heart Rate Buffer: addMeasurement

When adding a new raw data point:

e \We first acquire the intrinsic lock of the raw list.
e \We add the new data point to it.

e |Ifitis possible to compute a new aggregated data point:
We compute the aggregated data point.

We acquire the intrinsic lock of the aggregated list.

We add the newly computed aggregated data point to said list.
We release the intrinsic lock of the aggregated list.

We remove the first four data points in the raw list.

e \We release the intrinsic lock of the raw ist.

o O O O O

Player Heart Rate Buffer: readAllAndClean

When reading the aggregated data points in the buffer:

We acquire the intrinsic lock of the aggregated list.

We make a copy of said list.

We clear the aggregated list, removing all data points in it.
We release the lock.

We return the copy we made of the aggregated list.

Heart Rate Buffer: Synchronization Considerations

e When the heart rate sender thread reads data points from the buffer:
o Only the aggregated list’s intrinsic lock needs to be acquired.

e When the heart rate simulator thread adds data points to the buffer:

o Most of the time, we only acquire the raw list’s intrinsic lock.
o When we need to acquire also the aggregated list’s intrinsic lock, we do it just to add the newly
computed aggregated data point, and then immediately release it.

e The producer and consumer threads block only when:

o They write to and read from the buffer at the same time
o The write leads to computing a new aggregated data point.

