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Abstract

The aim of this work is to explore the Vulkan graphics API. We do this by
studying how the API works and using it to produce a working application.
Each chapter tries to focus on one single Vulkan concept producing a demo that
shows how it works in practice.

In chapter 1 we introduce the history behind Vulkan. This lets us understand
the reasons that guided the design of the API. In chapter 2 we explain all
the work that is almost always necessary to get a Vulkan application up and
running. In chapter 3 we finally do the simplest form of rendering: we clear the
window with a flat color. This may seem trivial, but it’s an important stepping
stone. Doing this, we can see all the concepts that come into play when drawing
something on the screen. In chapter 4 we finally write the computer graphics
hello world program: rendering a triangle. In chapter 5 and in chapter 6 we
see how to send data from the CPU to the GPU, making our application more
flexible. In chapter 7 we see how to solve a common problem in computer
graphics: how to determine the order in which to draw objects, so that closer
objects cover far away ones. In chapter 8 we take a break from Vulkan and
explain a very simple way to describe objects we want to draw, and how to
place them inside a virtual world. In chapter 9 we use all the concepts we have
learned so far to implement a lighting model. In chapter 10 we improve the
visual quality of our application enabling a Vulkan feature called multisample
anti aliasing.
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Chapter 1

Journey Towards Vulkan

1.1 Software Rendering

In the early days of computer graphics, if you wanted to draw an image on the
screen, you had to directly instruct the CPU to do so. For example, drawing a
line segment would require to run a loop and set the color of each pixel lying
along the line. This is called software rendering. Because software rendering
required a lot of CPU time, graphics performance was very slow.

1.2 GPUs

In 1981, Jim Clark, a professor at Stanford, had the idea to build ad hoc hard-
ware for making graphics operations faster. This hardware is what we today call
a graphics processing unit, or GPU, for short. The massive increase in graphics
performance is given by two factors. GPUs have several specialized processors
that can work in parallel. GPUs also have their own dedicated memory. GPU
processors have very fast access to this memory, much faster than their access
time on RAM.

1.3 Graphics APIs

Now that computers had specialized graphics hardware, programmers needed a
way to interact and use said hardware effectively. To simplify this process, each
graphics card manufacturer also developed a graphics API to directly interact
with their custom hardware.

Drawing using a graphics API is much simpler than using software rendering.
We simply need to instruct the CPU to send the appropriate commands and data
to the GPU. The GPU will then be responsible for executing the commands.
In this way, the CPU offloads most of the work to the GPU, which is optimized
to perform graphics commands very quickly. For example, if we want to draw
a line segment, we simply need to send to the GPU the points that define the
line segment itself, and then send a command that tells the GPU to draw it.
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1.4 OpenGL

Using a graphics API was very convenient for programmers. The problem was
that each graphics card manufacturer had their own custom graphics API. Thus,
if you wanted to port your software to other platforms, you had to rewrite it
using another graphics API. This was obviously a nuisance to many people.
Adding to this problem was the fact that different graphics APIs could have
entirely different ideas on how to do graphics, making porting software even
more difficult.

At that time, the leading graphics card manufacturer was SGI. The graphics
API that was used to interact with SGI hardware was called GL. With time,
other companies realized that GL. was a very good graphics API, and wanted
to let programmers work that way. So, in 1992, the most prominent graphics
card manufacturers and other companies banded together to form a committee
and created the OpenGL specification.

penGL.

Figure 1.1: OpenGL logo

OpenGL is based on the fact that software vendors have to provide their own
implementation that conforms to the OpenGL standard. On the other hand,
graphics card manufacturers have to provide programs that allow OpenGL to
talk to the underlying graphics hardware, what today we call device drivers.

1.5 OpenGL Issues

With time, graphics hardware continued to evolve, and graphics cards started
to offer new functionalities, becoming more and more programmable. To access
these new GPU features, OpenGL had to be extended, adding new concepts to
the API, while still maintaining the older functionalities. This lead to a growth
in the API’s complexity, which had to be shouldered by the device drivers,
making them more bloated. Because of this, device drivers became inefficient
and also riddled with bugs caused by many inconsistencies between different
OpenGL implementations.

GPUs were not the only thing to change. CPUs also continued to evolve.
In particular, CPUs started to have more than one core, offering the possibility
of multithreading. The problem is that OpenGL wasn’t meant to be used in a
multithreaded context, being a strictly synchronous API. This obviously can be
a big bottleneck in terms of performance.
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1.6 Vulkan

<Vu likan.

Figure 1.2: Vulkan logo

Vulkan is OpenGL’s spiritual successor. It is a newer graphics API that is meant
to abstract how modern GPUs work. Vulkan doesn’t suffer from the problems
that plague OpenGL because it has been designed from scratch and with modern
GPU’s architecture in mind. Vulkan reduces the driver overhead by being more
low level, allowing us to write more performant code. It is also designed to
be easy to use in a multithreaded environment, allowing us to submit GPU
commands from multiple threads.

1.7 Vulkan, OpenGL And Alternatives

Now that we have both discussed OpenGL and Vulkan, we can see that both of
them have their own pros and cons.

Vulkan is a lower level API compared to OpenGL. This means that Vulkan
exposes more complexity to the programmer. Vulkan does this because it wants
to allow programmers to write code that better suits their performance needs.
This could also be considered a drawback, since Vulkan is more verbose and also
requires a lot more code to get the same results compared to OpenGL.

Being low level doesn’t always mean being faster. With OpenGL, a lot
of thing were taken care by the device driver, written by people that know
how GPUs work. With Vulkan, the programmer has to bear an even greater
responsibility to sensibly use the API in order to not tank the application’s
performance.

Another thing to note is the fact that OpenGL is older than Vulkan. This
means that not all hardware that is still around today supports Vulkan. If we
want to run a graphics application on older hardware, we must fall back to
OpenGL.

Both OpenGL and Vulkan can be considered quite low level APIs nowa-
days. In fact, many people don’t directly use them. For example, it’s common
to use simpler libraries that abstract over these APIs to provide a more user
friendly experience for programmers. In this way, people can leverage the perfor-
mance improvements offered by Vulkan, or the ubiquitous portability provided
by OpenGL, without having to directly deal with the complexity that comes
using these APIs.
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Chapter 2

Initializing Vulkan

In this chapter we go through all the necessary steps to initialize a Vulkan
application. We first create a Vulkan instance. Then, we create a window and
link it to our instance creating a presentation surface. We determine what GPU
will be used by our application and create a logical device to interface with it.
Finally, we create a swapchain in order to interface with the presentation engine
of our operating system.

2.1 Create Vulkan Instance

To access any of the functionalities offered by Vulkan we first have to create a
Vulkan instance. To do this we call vkCreateInstance.

1 VkInstance instance = VK_NULL_HANDLE;
2 vkCreatelInstance (&createInfo, nullptr, instance);

Listing 2.1: Create Vulkan instance

2.1.1 VklInstanceCreatelnfo

We use a VkInstanceCreateInfo struct to configure the Vulkan instance we
are about to create.

VkInstanceCreateInfo createInfo = {};

createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pApplicationInfo = &appInfo;
createInfo.enabledLayerCount = layerCount;
createInfo.ppEnabledLayerNames = layers;
createInfo.enabledExtensionCount = extensionCount;
createInfo.ppEnabledExtensionNames = extentions;
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Listing 2.2: VkInstanceCreatelnfo initialization

2.1.2 VkApplicationInfo

We can see that the VkInstanceCreateInfo struct is not the only thing we
need. We have to specify a pointer to a VkApplicationInfo struct. Such
struct describes our Vulkan application.
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VkApplicationInfo appInfo = {};

appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "Vulkan example';
appInfo.apiVersion = VK_API_VERSION_1_2;

=W N

Listing 2.3: VkApplicationInfo initialization

2.1.3 Layers

While we initialize our VkInstanceCreateInfo struct, we can specify the layers
that we want to enable. The specified layers will be loaded after the Vulkan
instance creation.

Layers are optional components that hook into Vulkan. Layers can inter-
cept, evaluate and modify existing Vulkan functions. Layers are implemented
as libraries and are loaded during instance creation.

If we want to enable error checking, we need to load a layer that provides such
functionality. This kind of layer is know as validation layer. Since validation
layers cause overhead, we can disable them when we build the application in
release mode.

1 const char* const layers[] =

2 {

3 #ifdef _DEBUG

4 "VK_LAYER_KHRONOS_validation",
5 #endif

6 // other layers

7T}

Listing 2.4: Enabling the Khronos validation layer

Checking whether our layers are supported

Before creating our Vulkan instance, we should check if the layers we require are
actually supported. To do this we use vkEnumerateInstancelLayerProperties.
This function returns all the layers supported by our Vulkan installation. If all
the layers we require are present, then we can proceed to create our Vulkan
instance.

2.1.4 Extensions

While we initialize our VkInstanceCreateInfo struct, we can specify the in-
stance extensions that we want to enable. The specified instance extensions will
be loaded after creating our Vulkan instance.

Extensions are additional features that Vulkan implementations may pro-
vide. Extensions add new functions and structs to the API. Extensions may
also change some of the behavior of existing functions. We can either enable
extensions at an instance level or at a device level.

Here, we use an extension to provide a callback to handle the debug messages
generated by the validation layers.
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1 const char* const* extensions[] =

2 A

3 #ifdef _DEBUG

4 VK_EXT_DEBUG_UTILS_EXTENSION_NAME,
5 #endif

6 // Other extensions

7T}

Listing 2.5: Enabling an extention to handle validation layer debug messages

We specify one callback that handles messages generated by instance creation
and destruction. We specify another callback that handles all other API debug
messages.

1 #ifdef _DEBUG

2 VkDebugUtilsMessengerCreateInfoEXT dbgInfo = {};

3 dbgInfo.sType =
VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;

4 dbgInfo.messageSeverity = severity;

5 dbgInfo.messageType = type;

6 dbgInfo.pfnUserCallback = VulkanDebugCallback;

7 #endif

8

9 VkInstanceCreateInfo createInfo = {};

10 #ifdef _DEBUG

11 createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXTx*) (dbgInfo);

12 #endif

13

14 // ... after instance creation

15

16 // Enabling debug callback for all other API functions

17 #ifdef _DEBUG

18 VkDebugUtilsMessengerEXT debugMessenger = VK_NULL_HANDLE;

19 CreateDebugUtilsMessengerEXT (instance, &dbgInfo, nullptr, &
debugMessenger)

20 #endif

Listing 2.6: Setting up debug extension callbacks

The function that creates the VkDebugUtilsMessengerEXT object comes
from the extension we have enabled. Because of this, we have to load it manu-
ally into our address space using vkGetInstanceProcAddr. An elegant way to
solve this issue is to create a proxy function that handles this matter for us.

1 static VkResult CreateDebugUtilsMessengerEXT

2 (

3 VkInstance instance,

4 const VkDebugUtilsMessengerCreateInfoEXT* pCreatelnfo,
5 const VkAllocationCallbacks* pAllocator,

6 VkDebugUtilsMessengerEXT* pDebugMessenger

7

8

9

~

PFN_vkCreateDebugUtilsMessengerEXT f = (
PFN_vkCreateDebugUtilsMessengerEXT) (vkGetInstanceProcAddr (
instance, "vkCreateDebugUtilsMessengerEXT"));
10 return f(instance, pCreateInfo, pAllocator, pDebugMessenger);
1 '}

Listing 2.7: Extension function proxy
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Checking whether our extensions are supported

Before creating our Vulkan instance, we should check if the instance
extensions we require are actually supported. To do this we wuse
vkEnumerateInstanceExtensionProperties. This function returns all the
instance extensions that are supported by our Vulkan installation. If all the
instance extensions we require are present, then we can proceed to create our
Vulkan instance.

2.1.5 Vulkan Instance Cleanup

To destroy our debug messenger we use vkDestroyDebugUtilsMessengerEXT.
This function must be manually loaded using vkGetInstanceProcAddr. To
destroy our Vulkan instance we use vkDestroyInstance.

2.2 Open A Window

After creating our Vulkan instance we open a window. To do this we have two
options. We can use a cross platform library (SDL, GLFW) that will do all the
heavy lifting for us, so that we don’t have to worry about directly interacting
with the OS, freeing us from the burden of knowing how the windowing API
works. We can also decide to not use a library and opening the window ourselves.
We will do the latter, since it’s interesting to know how things work under the
hood. Since I'm on Windows, I'll be dealing with the Win32 API. We won’t go
in depth about the specifics of this API since it’s beyond our scope.

2.2.1 Create Window Handle

To create a handle to a window we use CreateWindowEx. We use windowStyle
and windowExtendedStyle variables to configure the look of our window.

—_

& ("WS_THICKFRAME) & ("WS_MINIMIZEBOX) & ("WS_MAXIMIZEBOX);
DWORD windowExtendedStyle = O0;

2

3

4 HWND handle = CreateWindowEx (
5 windowExtendedStyle,

6 WINDOW_CLASS_NAME,

7 name ,

8

windowStyle,
9 CW_USEDEFAULT, CW_USEDEFAULT,
10 windowWidth, windowHeight,
11 0,
12 0,
13 GetModuleHandle (0),

14 0

Listing 2.8: Creating a window handle using Win32 API

2.2.2 Computing Window Dimensions

Before creating our window, we need to compute its width and height. This is
due to the fact that a window comprises of a client area and a non client area.
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We usually want our client area to be of a certain size, but CreateWindowEx
takes the whole window width and the whole window height as arguments.

| | | Non Client Area

Client Area

Figure 2.1: Anatomy of a Win32 Window

1 RECT windowDimensions = { 0, O, clientWidth, clientHeight };

2 AdjustWindowRectEx (&windowDimensions, windowStyle, false,
windowExtendedStyle);

i32 windowWidth = windowDimensions.right - windowDimensions.left;

4 132 windowHeight = windowDimensions.bottom - windowDimensions.top;

w

Listing 2.9: Compute window width and height

2.2.3 Register Window Class

Before creating our window, we need to register its window class. To do this we
use RegisterClassEx. This function takes a pointer to a WNDCLASSEX struct.
This struct is used to configure our window class.

WNDCLASSEX windowClass = {};

windowClass.cbSize = sizeof (windowClass);
windowClass.style = CS_HREDRAW | CS_VREDRAW;
windowClass.lpfnWndProc = WindowProcedure;
windowClass.hInstance = GetModuleHandle (0) ;
windowClass.hIcon = LoadIcon(0, IDI_APPLICATION);
windowClass.hCursor = LoadCursor (0, IDC_ARROW);
windowClass.lpszClassName = WINDOW_CLASS_NAME;
windowClass.hIconSm = LoadIcon(0, IDI_APPLICATION);
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RegisterClassEx (&windowClass) ;

Listing 2.10: Register Window Class

2.2.4 Window Procedure

While filling in our WNDCLASSEX struct, we have to pass a window procedure.
This is a callback function used internally by the windowing API. We use this
function to handle the events that our window will receive during the lifespan
of our application. The Win32 API also provides a default window procedure.
Our custom window procedure will call this default procedure when we don’t
want to handle particular events ourselves. When we receive a quit, close or
destroy message we enqueue a quit message into our message queue.
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wparam, LPARAM lparam)

2 A

3 LRESULT result = 0;

4 switch (msg)

5 {

6 case WM_QUIT:

7 case WM_CLOSE:

8 case WM_DESTROY: { PostQuitMessage(0); } break;

9 default: { result = DefWindowProcA (hwnd, msg, wparam,
} break;

10 };

11

12 return result;

13}

Listing 2.11: Window Procedure

2.2.5 Process Window Messages

static LRESULT CALLBACK WindowProcedure (HWND hwnd, UINT msg,

WPARAM

lparam) ;

In order for the user to be able to interact with our window, we need to handle
the window messages that are dispatched by the OS towards our window. All

these messages come from the application’s message queue.

1 MSG message = {};

2 while (PeekMessage (&message, 0, 0, 0, PM_REMOVE))
3 {

4 switch (message.message)

5 {

6 case WM_QUIT:

7 {

8 isApplicationRunning = false;
9 } break;

10

11 default:

12 {

13 TranslateMessage (&message) ;
14 DispatchMessageA (&message) ;
15 } break;

16 }

17

Listing 2.12: Process Window Messages

Here we iterate over all the window messages that we haven’t handled. If
we find a quit message, then we exit our application. All other messages will be

dispatched to our window procedure.

2.2.6 Window Cleanup

When our application is shutting down, we destroy our window and unregister

its class.
1 DestroyWindow (handle) ;
2 UnregisterClass (WINDOW_CLASS_NAME, GetModuleHandle (0));

Listing 2.13: Window Cleanup
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2.3 Create A Presentation Surface

We must link the newly created window to our Vulkan instance. To do this we
create a presentation (or window) surface. This operation is platform specific.
Since we are using Windows, in order to create our presentation surface we use
vkCreateWin32SurfaceKHR.

1 VkSurfaceKHR surface = VK_NULL_HANDLE;
2 vkCreateWin32SurfaceKHR (instance, &createInfo, nullptr, &surface);

Listing 2.14: Create Presentation Surface

2.3.1 VkWin32SurfaceCreateInfoKHR

We use a VkWin32SurfaceCreateInfoKHR struct to configure the presentation
surface we are about to create.
1 VkWin32SurfaceCreateInfoKHR createInfo = {};

createInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;

2
3 createInfo.hinstance = GetModuleHandleA (0) ;
4 createInfo.hwnd = handle;

Listing 2.15: Filling in a VkWin32SurfaceCreateInfoKHR struct

2.3.2 Required Instance Extensions

Vulkan, being cross platform, cannot interact directly with the OS windowing
system. To do this we use two extensions.

The first extension that we enable is the instance level KHR surface exten-
sion. This extension exposes a VkSurfaceKHR object that represents a surface
to present rendered images to. This surface will be backed by the window we
have created.

The second extension we enable is platform specific and is needed to create
our VkSurfaceKHR object. In our case, since we are using Windows, we enable
the instance level KHR win32 surface extension.

#define VK_USE_PLATFORM_WIN32_KHR
#include "Vulkan.h"

const char* const* extensions[] =

{
VK_KHR_SURFACE_EXTENSION_NAME,
VK_KHR_WIN32_SURFACE_EXTENSION_NAME,
// ... other extensions
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Listing 2.16: Presentation Surface Extensions

Notice the #define preprocessor directive right before including our Vulkan
header. We do this to access our native platform functions.

2.3.3 Presentation Surface Cleanup

To destroy our presentation surface we use vkDestroySurfaceKHR.
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2.4 Pick A Physical Device

Now that we have a Vulkan instance and a presentation surface, we select a
physical device (a GPU) that supports the features we need. The selected GPU
will be the one that will be used by our application.

2.4.1 Listing Available Physical Devices

We first get a list of all the physical devices that are available on the system.
To do this we use vkEnumeratePhysicalDevices. These physical devices can
either be integrated or dedicated GPUs.

2.4.2 Finding A Suitable Physical Device

Now that we have a list of all the physical devices, we can select one of them.
We could, for example, automatically pick the first one without doing any kind
of checking. This approach is doable if we don’t have any particular requirement
for our physical devices.

Usually we have a set of specific physical device features that are mandatory
for our application to run. Hence, in our list, some physical devices will be
suitable for our application, while others won’t.

The approach we take here is to iterate through the list of all physical devices
and pick the first one that is suitable for our application. One question still
remains: how can we tell whether a physical device is suitable or not?

Support Grpahics Operations

To check if our physical device supports graphics operations we list
all the queue families of our physical device. To do this we wuse
vkGetPhysicalDeviceQueueFamilyProperties. Then we check if at least one
queue family supports graphics operations.

for (u32 i = 0; i < queueFamilyCount; i++)

{
VkQueueFamilyProperties queueFamily = queueFamilies[i];
if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT)
{

// graphics operations supported and i is the index
// of a queue family that supports such operations
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Listing 2.17: Check for graphics operations support

Support Present Operations

To check if our physical device supports present operations we list
all the queue families of our physical device. To do this we wuse
vkGetPhysicalDeviceQueueFamilyProperties. Then we check if at least one
queue family supports present operations.
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1 for (u32 i = 0; i < queueFamilyCount; i++)

2 {

3 VkBool32 presentSupport = false;

4 vkGetPhysicalDeviceSurfaceSupportKHR (physicalDevice, i,
5 surface, &presentSupport);

6 if (presentSupport)

7 {

8 // present operations are supported and i is the index
9 // of a queue family that supports such operations
0 }

1}

Listing 2.18: Check for present operations support

Support Presentation To A Surface

Not only our physical device must support present operations. It must also be
able to present images to the screen. Image presentation is tied to the window
and consequently to the surface associated with it. For this reason, image
presentation to the screen is not part of Vulkan. We have to enable the KHR
swapchain device extension to support such operation. We need this particular
extension because image presentation to a surface is achieved using a swapchain.

1 const char* const* deviceExtensions[] =
2 o

3 VK_KHR_SWAPCHAIN_EXTENSION_NAME,

4 // ... other device extensions

5 1}

Listing 2.19: Device extension for image presentation to the screen

As we have seen earlier, before enabling an extension, we should check for
its support. To check whether our physical device supports one or more device
extensions we use vkEnumerateDeviceExtensionProperties. This function
returns a list of all the extensions supported by our physical device. Then, we
simply check whether all the extensions we require are present in the list.

Support A Present Mode

Checking if a swapchain is supported is not sufficient. Even if it’s supported, it
may not be compatible with our presentation surface. We need to check whether
our physical device supports at least one present mode for our presentation
surface. We can do this using vkGetPhysicalDeviceSurfacePresentModesKHR.
This functions returns a list of present modes supported by our physical device
that are compatible with our presentation surface. If there is at least one present
mode in the list, then we are good to go.

2.5 Create A Logical Device

To interact with the physical device we have selected we need to create a logical
device.
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VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
u32 graphicsQueueFamilyIndex;
u32 presentQueueFamilyIndex;

// ... selecting physical device

VkDevice device = VK_NULL_HANDLE;
vkCreateDevice (physicalDevice, &createInfo, nullptr, &device)
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Listing 2.20: Create a logical device

2.5.1 VkDeviceCreatelnfo

We use a VkDeviceCreateInfo struct to configure the device we are about to
create.

During physical device picking, we saved two queue family indices. The
first for a queue family that supports graphics operations. The second for
a queue family that supports present operations. The way we populate our
VkDeviceCreateInfo struct is different based on whether these two indices are
equal or not. If our graphics and present queue families are the same, we tell
our device that we want to create a single queue. Otherwise, we tell our device
that we want to create two queues, one from our graphics queue family, and the
other from our present queue family.

1 // Specify requested device features here

2 VkPhysicalDeviceFeatures deviceFeatures = {};

3 // We don’t use priority queues

4 £32 queuePriority = 1.0f;

5

6 VkDeviceQueueCreateInfo queueCreateInfo = {};

7 queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
8 queueCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
9 queueCreateInfo.queueCount = 1;

10 queueCreateInfo.pQueuePriorities = &queuePriority;

11

12 VkDeviceCreateInfo createInfo = {};

13 createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

14 createInfo.queueCreateInfoCount = 1;

15 <createInfo.pQueueCreateInfos = &queueCreatelInfo;

16 createInfo.enabledExtensionCount = deviceExtensionCount;

17 createInfo.ppEnabledExtensionNames = deviceExtensions;

18 createInfo.pEnabledFeatures = &deviceFeatures;

Listing 2.21: Create info struct when queue families are the same
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10
11
12
13
14

15
16
17

19
20
21
22
23
24

26
27
28
29
30
31

// Specify

requested device features here

VkPhysicalDeviceFeatures deviceFeatures = {};
// We don’t use priority queues
£32 queuePriority = 1.0f;

VkDeviceQueueCreateInfo graphicsQueueCreateInfo = {};
graphicsQueueCreatelInfo.sType =
VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
graphicsQueueCreateInfo.queueFamilyIndex =
graphicsQueueFamilyIndex;
graphicsQueueCreateInfo.queueCount = 1;
graphicsQueueCreateInfo.pQueuePriorities = &queuePriority;
VkDeviceQueueCreateInfo presentQueueCreateInfo = {};
presentQueueCreateInfo.sType =
VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
presentQueueCreateInfo.queueFamilyIndex = presentQueueFamilyIndex;
presentQueueCreateInfo.queueCount = 1;
presentQueueCreateInfo.pQueuePriorities = &queuePriority;

VkDeviceQueueCreateInfo queueCreateInfos[] =

{
graphicsQueueCreatelnfo,
presentQueueCreatelInfo,

};

VkDeviceCreateInfo createInfo = {};

deviceInfo

createlInfo.
createInfo.
createlInfo.
createInfo.

createlnfo

Listing 2.22: Create info struct when queue families are different

.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
queueCreateInfoCount = arraysize(queueCreateInfos);

pQueueCreateInfos = queueCreatelnfos;

.pEnabledFeatures = &deviceFeatures;

2.5.2 Retrieve Queue Handles

After creating our logical device, we retrieve the handles to the queues we created

together with our device.

N O ULk W N

2.5.3

VkQueue graphicsQueue = VK_NULL_HANDLE;
vkGetDeviceQueue (device, graphicsQueueFamilyIndex,
&graphicsQueue) ;

VkQueue presentQueue = VK_NULL_HANDLE;
vkGetDeviceQueue (device, presentQueueFamilyIndex,
&presentQueue) ;

Listing 2.23: Retrieve queue handles

Cleanup

We use vkDestroyDevice to destroy our logical device.
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2.6 Create A Swapchain

After having created our logical device, we can create a swapchain object. We
need a swapchain to handle the logic for image presentation. A swapchain
creates and manages a set of images that can be presented to the screen.

1 VkSwapchainKHR swapchain = VK_NULL_HANDLE;
2 vkCreateSwapchainKHR (device, &createInfo, nullptr, &swapchain);

Listing 2.24: Create a swapchain

2.6.1 VkSwapchainCreateInfoKHR

We use a VkSwapchainCreateInfoKHR struct to configure the swapchain we are
about to create.

1 VkSwapchainCreateInfoKHR createInfo = {};

2 createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
3 createInfo.surface = surface;

4 createInfo.minImageCount = swapchainMinImageCount;

5 <createInfo.imageFormat = swapchainImageFormat.format;

6 createInfo.imageColorSpace = swapchainImageFormat.colorSpace;
7 createInfo.imageExtent = swapchainImageExtent;

8 <createlInfo.imageArraylLayers = 1;

9 <createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
10 createInfo.preTransform = surfaceCapabilites.currentTransform;
11 createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
12 createInfo.presentMode = swapchainPresentMode;

13 createInfo.clipped = VK_TRUE;

14 createInfo.oldSwapchain = VK_NULL_HANDLE;

Listing 2.25: Configure our swapchain

We have to additionally provide other data that depends on whether or not
we use the same queue for graphics and present operations.

1 u32 queueFamilyIndices[] =

2 {

3 graphicsQueueFamilyIndex,

4 presentQueueFamilyIndex,

5 1}

6

7 if (graphicsQueueFamilyIndex != presentQueueFamilyIndex)

8 A

9 // Using the concurrent sharing mode we don’t need to worry

10 // about resource queue ownership transitions

11 swapchainCreateInfo.imageSharingMode =
VK_SHARING_MODE_CONCURRENT;

12 swapchainCreateInfo.queueFamilyIndexCount =

13 arraysize (queueFamilyIndices);

14 swapchainCreateInfo.pQueueFamilyIndices = queueFamilyIndices;

15 3

16 else

17 A

18 // We use a single queue, thus it can exclusively own the

19 // swapchain images that will be created.

20 // This is more efficient

21 swapchainCreateInfo.imageSharingMode =
VK_SHARING_MODE_EXCLUSIVE;

22}

Listing 2.26: Configure queue ownership over swapchain images
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2.6.2 Select The Minimum Swapchain Image Count

Here we want to determine the minimum number of swapchain images
to create. We can do this by querying the surface capabilities with
vkGetPhysicalDeviceSurfaceCapabilitiesKHR.

1 u32 swapchainMinImageCount = capabilities->minImageCount + 1;

2 // If maxImageCount is 0, there is no 1limit on the number of images

3 if ((capabilities->maxImageCount > 0) && (swapchainMinImageCount >
capabilities ->maxImageCount))

4 {

5 swapchainMinImageCount = capabilities->maxImageCount;

6 2

7

8 return swapchainMinImageCount;

Listing 2.27: Select swapchain image count

Here we would like to use one more image than the bare minimum. This is
due to the fact that, if we use the bare minimum number of images, we may
have to wait for the driver to complete internal operations before we can acquire
another swapchain image to render to.

Here we also have to be aware of the fact that there can be a maximum
number of swapchain images we can require. Thus, we must be careful to cap
the number of images that we request to the nominal maximum.

2.6.3 Select The Swapchain Image Format

We must specify a proper format for our swapchain images. To do this, we
first query for all image formats that are supported by our surface. We can do
this using vkGetPhysicalDeviceSurfaceFormatsKHR. Once we have a list of
valid formats we could either pick one randomly or try to pick the one that we
consider the best. Here, we would like to use SRGB color space, with 32 bit
RGBA format.

1 if ((formatCount == 1) && (formats[0].format == VK_FORMAT_UNDEFINED
))

2 {

3 // There is no preferred surface format

4 return { VK_FORMAT_R8G8B8A8_UNORM,
VK_COLORSPACE_SRGB_NONLINEAR_KHR };

5 }

6 else

7 {

8 // We have to pick a format from the list

9 for (u32 i = 0; i < formatCount; i++)

10 {

11 if (formats[i].format == VK_FORMAT_R8G8B8A8_UNORM)

12 {

13 return formats[i];

14 }

15 }

16

17 // We haven’t found the format(s) that we were looking for

18 // Pick the first format

19 return formats [0];

20 ¥

Listing 2.28: Select swapchain image format
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2.6.4 Select The Swapchain Image Extent

We must specify the resolution for our swapchain images. This will almost
always be equal to the resolution of our window. Some windowing systems allow
us to differ, indicating that the current width and height are the maximum
value of a an unsigned 32 bits integer. In this scenario, we have to pick the
resolution that best matches the window within the bounds specified by our
surface capabilities.

1 if (capabilities->currentExtent.width == OxFFFFFFFF)

2 {

3 VkExtent2D extent = { windowWidth, windowHeight };

4 extent.width = clamp(extent.width, capabilities->minImageExtent

.width, capabilities->maxImageExtent.width);

5 extent.height = clamp(extent.height, capabilities->
minImageExtent .height, capabilities->maxImageExtent.height);

6 return extent;

7T}

8 else

9 {

10 // the current surface size is perfect for the job

11 return capabilities->currentExtent;

12}

Listing 2.29: Select swapchain image extent

2.6.5 Select The Swapchain Presentation Mode

We start by listing all the presentation modes that our physical device
supports for presenting images to our surface. =~ We can do this using
vkGetPhysicalDeviceSurfacePresentModeskHR. We already did this while
selecting our physical device. After that, we check whether the mailbox
presentation mode is supported. We would like to use this present mode
because it doesn’t suffer from tearing and it’s not locked to the screen refresh
rate. If it’s present we are good to go. Otherwise we select a presentation
mode that is guaranteed to be always supported: VK_PRESENT_MODE_FIFO_KHR.

for (u32 i = 0; i < modeCount; i++)

{
if (modes[i] == VK_PRESENT_MODE_MAILBOX_KHR)
{

return VK_PRESENT_MODE_MAILBOX_KHR;
}
}

// Use FIFO since it’s always supported (spec)
return VK_PRESENT_MODE_FIFO_KHR;
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Listing 2.30: Select swapchain present mode

2.6.6 Retrieve Swapchain Images

Now that we have created a swapchain we can retrieve the handles to the images
that were created together with it. We will use these images during rendering.
We can do this using vkGetSwapchainImagesKHR;
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2.6.7 Create Swapchain Image Views

Vulkan doesn’t allow us to use images directly. Before using an image, we first
have to create a view on it. This also applies to our swapchain images. Thus,
for every image in the swapchain, we must create a corresponding image view

for it.

1 VkImageViewCreateInfo createInfo = {};

2 createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
3 createlnfo.image = swapchainImages[il;

4 createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;

5 «createInfo.format = swapchainImageFormat.format;
6 createInfo.components =

7T o

8 VK_COMPONENT_SWIZZLE_IDENTITY,

9 VK_COMPONENT_SWIZZLE_IDENTITY,

10 VK_COMPONENT_SWIZZLE_IDENTITY,

11 VK_COMPONENT_SWIZZLE_IDENTITY,

12 };

13 <createInfo.subresourceRange =

14 {

15 VK_IMAGE_ASPECT_COLOR_BIT,

16 0,

17 1,

18 0,

19 1,
20 };
21
22 VkImageView* swapchainImageViews = nullptr;
23 vkCreateImageView(device, &createInfo, nullptr, &

swapchainImageViews [i]);

Listing 2.31: Create swapchain image views

2.6.8 Cleanup

We first destroy the swapchain image views using vkDestroyImageView. After
that, we destroy the swapchain itself using vkDestroySwapchainKHR. The
swapchain images will be automatically destroyed when vkDestroySwapchainKHR
is called.

2.7 Our Application So Far

Here we can see how all the parts we presented in this chapter fit together to
form a working application.
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int main()

{

// Create Vulkan instance and debug messenger
// Create window

// Create presentation surface

// Pick physical device

// Create logical device

// Create swapchain

bool isApplicationRunning = true;
while (isApplicationRunning)
{
// Process window messages
¥
// Cleanup

return O0;

Listing 2.32: Structure of our application
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Chapter 3

Clearing The Window

In this chapter we see all the steps that are required to clear our window with
a flat color.

During the application startup phase, we create some resources required for
rendering: two semaphores, used to synchronize the execution of graphics and
present commands, a command buffer, used to submit commands to the GPU,
and a render pass, used to describe the rendering itself.

During the application main loop, we must follow these steps for our render-
ing to be correct. We acquire a swapchain image, this will be used as our render
target. Before starting recording new commands into the command buffer, we
wait for the previously submitted commands to finish their execution. We bun-
dle the acquired swapchain image into a framebuffer, this will let us use said
image during rendering. We record the appropriate graphics commands into
the command buffer. We submit the command buffer to the graphics queue.
Finally, we submit a present command to the present queue.

1 Vollan Example

Figure 3.1: Clear the window background blue
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3.1 Create Commands Synchronization Re-
sources

When we use Vulkan, we have to take into account the fact that we must han-
dle commands synchronizations ourselves. In particular, we must synchronize
rendering and present commands. To accomplish this, we use two semaphores.
One semaphore will be signaled when a swapchain image is available to be used
as our render target. When this semaphore is signaled, we may start render-
ing. Another semaphore will be signaled when we finish rendering. When this
semaphore is signaled, we may present the image.

VkSemaphore imageAvailableSemaphore = VK_NULL_HANDLE;
VkSemaphore renderFinishedSemaphore = VK_NULL_HANDLE;

VkSemaphoreCreateInfo createInfo = {};

createInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;

vkCreateSemaphore (device, &createInfo, nullptr, &
imageAvailableSemaphore) ;

7 vkCreateSemaphore (device, &createInfo, nullptr, &

renderFinishedSemaphore);
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Listing 3.1: Create semaphores

3.1.1 Cleanup

We destroy the previously allocated semaphores with vkDestroySemaphore.

3.2 Create Command Buffer

We use a command buffer to submit commands to the GPU. We use
vkAllocateCommandBuffers to create a command buffer.

1 VkCommandBuffer commandBuffer = VK_NULL_HANDLE;
2 vkAllocateCommandBuffers (device, &allocInfo, commandBuffer);

Listing 3.2: Allocate a command buffer from our graphics command pool

3.2.1 VkCommandBuffer AllocateInfo

We use a VkCommandBufferAllocateInfo struct to configure the command
buffer we are about to create. In our case we allocate a primary command
buffer. Such buffers can be directly submitted to the GPU; this is what we
want.

VkCommandBufferAllocateInfo allocInfo = {};

allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND _BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = graphicsCommandPool;

allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = 1;
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Listing 3.3: Configure command buffer creation
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3.2.2 Create Command Pool

We create a command buffer allocating it from a command pool. Thus, before
creating a command buffer, we must create a command pool. In our case, we
explicitly submit commands only to the graphics queue. Hence, we only need
to create one graphics command pool.

1 VkCommandPool graphicsCommandPool = VK_NULL_HANDLE;

2 vkCreateCommandPool (device, &createInfo, nullptr, &
graphicsCommandPool) ;

Listing 3.4: Create graphics command pool

VkCommandPoolCreateInfo

We use a VkCommandPoolCreateInfo struct to configure the command pool we
are about to create. Here we use the reset command buffer flag because we want
to be able to write commands multiple times into the command buffers created
from this pool.

1 VkCommandPoolCreateInfo createInfo = {};
2 createInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
3 createInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
4 createInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
Listing 3.5: Configure our graphics command pool
Cleanup

When our application is shutting down, we have to destroy all the previously
created command pools. To do this we use vkDestroyCommandPool.

3.2.3 Command Buffer Fence

Together with our command buffer, we also create a fence. We can use a fence
to wait for our command buffer execution to finish. The fence that we create is
already signaled from the start. This is due to how we will use it later.
VkFenceCreateInfo createInfo = {};

createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
createInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;

VkFence commandBufferFence = VK_NULL_HANDLE;
vkCreateFence (device, &createInfo, nullptr, &commandBufferFence);
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Listing 3.6: Create a fence for our command buffer

3.2.4 Cleanup

We use vkFreeCommandBuffers to free the previously allocated command
buffers. We use vkDestroyFence to destroy our the previously created fences.
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3.3 Create Render Pass

Before rendering, we need to describe what types of images will be used and the
order of our draw calls. To do this we create a render pass.

1 VkRenderPass renderPass = VK_NULL_HANDLE;
2 vkCreateRenderPass(device, &createInfo, nullptr, &renderPass);

Listing 3.7: Create a render pass

3.3.1 VkRenderPassCreatelnfo

We use a VkRenderPassCreateInfo struct to configure the render pass we are
about to create.

VkRenderPassCreateInfo createInfo = {};

createInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
createInfo.attachmentCount = attachmentCount;
createInfo.pAttachments = attachments;
createInfo.subpassCount = subpassCount;

createInfo.pSubpasses = subpassess;

// 1If there is more than one subpass, we need to specify

// synchronization requirements through subpass dependencies
createInfo.dependencyCount = O0;

createInfo.pDependencies = nullptr;
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Listing 3.8: Configure our render pass

3.3.2 Render Pass Attachment Descriptions

During render pass creation, we specify an array of attachment descriptions.
This array describes all the attachments that are going to be used by the render
pass.

In our case we have only one attachment. This attachment will be one of
the swapchain images. We want to clear our attachment before using it for the
first time in the render pass. We want to preserve the attachment’s contents
after using it for the last time in the render pass. We don’t care about the
attachment’s stencil components. We don’t care about the attachment’s image
layout before starting the render pass. We want to transition the attachment
to a layout compatible with image presentation at the end of the render pass.

1 VkAttachmentDescription colorAttachment = {};

2 colorAttachment.format = swapchainImageFormat;

3 colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;

4 colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;

5 <colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;

6 colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
7 colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
8 colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;

9 colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
10

11 VkAttachmentDescription attachments[] =

12 {

13 colorAttachment ,

14 };

Listing 3.9: Render pass attachment descriptions

36



3.3.3 Render Pass Subpasses

During render pass creation, we specify an array of subpass descriptions. This
array describes the subpasses that define the render pass.

In our case we have only one subpass that uses our single attachment to write
color data into it. Note that we specify the image layout that the attachment
must have during this subpass.

VkAttachmentReference colorAttachmentReference = {};

// Attachment’s index in ’attachments’ array

colorAttachmentReference.attachment = 0;

// Layout the attachment uses during the subpass

colorAttachmentReference.layout =
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
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6
7 VkAttachmentReference colorAttachmentReferences[] =
8 {

9 colorAttachmentReference,

10 3

12 VkSubpassDescription colorSubpass = {};
13 colorSubpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;

14 colorSubpass.colorAttachmentCount = arraysize(
colorAttachmentReferences) ;

15 colorSubpass.pColorAttachments = colorAttachmentReferences;

16

17 VkSubpassDescription subpassess[] =

18 {

19 colorSubpass,

20 3};

Listing 3.10: Render pass subpass descriptions

3.3.4 Cleanup

To destroy our render pass we use vkDestroyRenderPass.

3.4 Clear The Window

In our application, for every iteration of the main loop, we render an image. In
this case, we simply clear the window background with a flat color.

3.4.1 Acquire A Swapchain Image

The first step for drawing something to the screen is to get an image that
serves as our render target. This image must also be presentable to the presen-
tation engine. Only swapchain images satisfy the latter requirement. Hence,
we must use one of them as our render target. The problem is that we don’t
know the next available swapchain image. To determine such image we use
vkAcquireNextImageKHR. Note that the image is not guaranteed to be already
available when the function returns. For this reason, we use the image available
semaphore we created earlier. It will be signaled when the image will actually
be ready.

37



1 u32 nextSwapchainImageIndex = 0;

2 vkAcquireNextImageKHR (

3 device,

4 swapchain,

5 UINT64_MAX,

6 imageAvailableSemaphore,

7 VK_NULL_HANDLE,

8 &nextSwapchainImagelIndex

9 s

10

11 nextSwapchainImage = swapchainImages[nextSwapchainImageIndex];
12 nextSwapchainImageView = swapchainImageViews[

nextSwapchainImageIndex];

Listing 3.11: Acquire the next swapchain image that will be presented

3.4.2 Wait For The Previous Commands To Finish

Before recording new commands into our command buffer, we have to wait for
the previously submitted commands to finish. To do this wait on the command
buffer fence. After the wait terminates, we have to manually reset the fence
state to unsignaled. We do this so that we can wait on the fence again, during
the next frame.

1 vkWaitForFences(device, 1, &commandBufferFence, VK_TRUE,
2 UINT64_MAX);
3 vkResetFences (device, 1, &commandBufferFence) ;

Listing 3.12: Wait for command buffer execution to finish

3.4.3 Create A Framebuffer

Before recording our rendering commands, we need to create a new framebuffer.
A framebuffer is the set of attachments that a render pass uses during rendering.
Before creating a new framebuffer, remember to destroy the framebuffer that
was used during the previous frame. It’s also important to remember to destroy
the last created framebuffer during the application cleanup phase.

1 vkDestroyFramebuffer (device, framebuffer, nullptr);
2 vkCreateFramebuffer (device, &createInfo, nullptr, &framebuffer);

Listing 3.13: Create a new framebuffer

VkFramebufferCreateInfo

To configure the framebuffer we are about to create we use a
VkFramebufferCreateInfo struct. In our case, our framebuffer will
contain a single attachment: the next available swapchain image.
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1 VkFramebufferCreateInfo createInfo = {};

2 createInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
3 createInfo.renderPass = renderPass;

4 createInfo.attachmentCount = 1;

5 «createInfo.pAttachments = &nextSwapchainImageView;

6 createInfo.width = swapchainImageExtent.width;

7 createInfo.height = swapchainImageExtent.height;

8 <createlInfo.layers = 1;

Listing 3.14: Configure our framebuffer

3.4.4 Record Rendering Commands

Now we can start recording the new rendering commands. All the func-
tions that write a command into our command buffer must lay between
vkBeginCommandBuffer and vkEndCommandBuffer.
VkCommandBufferBeginInfo beginInfo = {};

beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;

beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
vkBeginCommandBuffer (commandBuffer, &beginlInfo);

// Vulkan commands go here
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vkEndCommandBuffer (commandBuffer) ;

Listing 3.15: Boilerplate code for recording a command buffer

Here we are recording a one time submit command buffer. It means that
each recording will only be submitted once to the GPU. Indeed, for every frame,
we record and then submit our command buffer. Hence, each recording will be
submitted only once. We do this so that we can change our clear color over
time.

1 VkClearValue clearValue = {};

2 A

3 £32 red = 0.0f;

4 £32 blue = std::abs(std::sin(time));

5 £32 green = 0.0f;

6 clearValue.color = { red, green, blue, 0.0f };

7

Listing 3.16: Change window clear color over time

Now we can actually write some commands into our command buffer. The
idea is very simple. We record two commands: the first is for starting an instance
of our render pass; the second is for ending the render pass instance.

1 vkCmdBeginRenderPass (commandBuffer, &beginInfo,

VK_SUBPASS_CONTENTS_INLINE);
2 vkCmdEndRenderPass (commandBuffer);

Listing 3.17: Clear the window using a render pass

First we have to configure the render pass instance wusing a
VkRenderPassBeginInfo struct. The field that requires an explana-
tion is pClearValues. This is an array of clear values for each attachment.
The array is indexed by attachment number. Consider the i-th attachment. If
it has VK_ATTACHMENT _LOAD_OP_CLEAR as loadOp value, then pClearValues[i]
will be used for the clear value. Otherwise, pClearValues[i] will be ignored.
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We use the clear color we computed earlier as our clear value.

VkRenderPassBeginInfo beginInfo = {};

beginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
beginInfo.renderPass = renderPass;

beginInfo.framebuffer = framebuffer;
beginInfo.renderArea.offset = { 0, 0 };
beginInfo.renderArea.extent = context.swapchainImageExtent;
beginInfo.clearValueCount = 1;

beginInfo.pClearValues = &clearValue;
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Listing 3.18: Configure our render pass instance

Now we can explain how we clear the image with our clear value.
We start by beginning our render pass. This causes the first subpass to
start.  Right before the start of our subpass, an implicit image layout
transition occurs. This causes the swapchain image to transition to
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT OPTIMAL. With this layout, we can
write color data into the image. Since our subpass is the first to use our
swapchain image color attachment, the image is cleared using the specified
clear value. Right before ending the render pass, another implicit image
layout transition occurs. This causes the swapchain image to transition to
VK_IMAGE_LAYQUT_PRESENT_SRC_KHR. With this layout, our image can be used
by the presentation engine.

3.4.5 Submit Rendering Commands

Once we have recorded all the necessary rendering commands into a command
buffer, we can submit it to the GPU for execution. In our case, we submit the
command buffer to the graphics queue. When the execution of the command
buffer is completed, our command buffer fence will be signaled.

1 vkQueueSubmit (graphicsQueue, 1, &submitInfo, commandBufferFence);

Listing 3.19: Submit command buffer to the GPU

We use a VkSubmitInfo struct to configure our command buffer submission.

pWaitSemaphores is an array of semaphores upon which to wait before the
submitted command buffers begin execution. In our case we only use one
semaphore: our image available semaphore. We do this because we have to
wait for our swapchain image to be available before rendering into it.

pWaitDstStageMask is a bitmask of pipeline stages at which each corre-
sponding semaphore wait will occur. In our case we are saying that we do our
semaphore wait as soon as the graphics pipeline starts executing the commands
recorded into our command buffer.

pSignalSemaphores is an array of semaphores to be signaled once the sub-
mitted command buffers have completed execution. In our case we signal only
one semaphore: our render finished semaphore. When this semaphore is sig-
naled, it means that we have finished rendering our image.
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VkPipelineStageFlags waitDstStageMask =
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;

2

3 VkSubmitInfo submitInfo = {};

4 submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

5 submitInfo.waitSemaphoreCount = 1;

6 submitInfo.pWaitSemaphores = &imageAvailableSemaphore;

7 submitInfo.pWaitDstStageMask = &waitDstStageMask;

8 submitInfo.commandBufferCount = 1;

9 submitInfo.pCommandBuffers = &commandBuffer;

10 submitInfo.signalSemaphoreCount = 1;

11 submitInfo.pSignalSemaphores = &renderFinishedSemaphore;

Listing 3.20: Configure command buffer submission

3.4.6 Present

The only thing missing is to actually present our rendered image to the window.
Here we specify our present queue as the GPU queue that will execute our
present command.

1 vkQueuePresentKHR (presentQueue, &presentInfo);

Listing 3.21: Issue a present command

We use a VkPresentInfoKHR struct to configure our present command sub-
mission.

pWaitSemaphores is an array of semaphores to wait for before issuing the
present command. In our case we only use one semaphore: our render finished
semaphore. Simply put, we have to wait for our rendering to finish before
presenting the image to the window.

VkPresentInfoKHR presentInfo = {};

presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = &renderFinishedSemaphore;
presentInfo.swapchainCount = 1;

presentInfo.pSwapchains = &swapchain;
presentInfo.pImagelndices = &nextSwapchainImageIndex;
presentInfo.pResults = nullptr;
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Listing 3.22: Configure present command submission

3.5 Cleanup

Now that our application submits commands to the GPU, a problem may arise.
Being commands executed asynchronously on the GPU, we could exit the appli-
cation, and thus freeing all our resources, before all submitted commands finish
their execution. This can lead to errors, because some commands may act upon
one or more resources that were deleted. We can fix this issue by waiting for our
device to be idle, meaning that all processing on all device’s queues is finished,
before cleaning up our resources. We can do this using vkDeviceWaitIdle.
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3.6 Our Application So Far

Here we can see how all the concepts we have seen in this chapter come together
to form our application

1 int main()

2 {

3 // Initialize Vulkan

4

5 // Create semaphores

6 // Crate graphics command pool

7 // Create command buffer and fence
8 // Create render pass

9

10 bool isApplicationRunning = true;
11 while (isApplicationRunning)

12 {

13 // Process window messages

14

15 // Acquire a swapchain image
16 // Wait for the previous commands to
17 // Create a framebuffer

18 // Record rendering commands
19 // Submit rendering commands
20 // Present

21 }

22

23 // Wait device idle

24

25 // Destroy last created framebuffer
26

27 // Cleanup

28

29 return O0;

30 3

finish

Listing 3.23: Structure of our application
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Chapter 4

Rendering Our First
Triangle

In this chapter we see how to render a triangle on the screen. This is a very
important step. If we are able to draw a single triangle, then we can draw almost
any shape. We can do this by considering the shape we want to draw as if it
were made up of one or more triangles and then drawing them. For example a
square can be made using two triangles. A cube can be made using six squares.
And the list goes on.

In order to render a triangle using Vulkan, we use a pipeline state object.
This object describes the entire state of the graphics pipeline. Thus, it also
describes how we want to draw something.

In the application main loop, during the command buffer recording, we sim-
ply need to use our pipeline state object and issue a draw call that activates our
pipeline and draws what we want.

Figure 4.1: Rendering our triangle

4.1 Create A Pipeline State Object

To create a pipeline state object we use vkCreateGraphicsPipelines.
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1 VkPipeline pipeline = VK_NULL_HANDLE;
2 vkCreateGraphicsPipelines (device, VK_NULL_HANDLE, 1, &createlInfo,
nullptr, &pipeline);

Listing 4.1: Create a pipeline state object

4.1.1 VkGraphicsPipelineCreatelnfo

We use a VkGraphicsPipelineCreateInfo struct to configure the pipeline state
object we are about to create.

1 VkGraphicsPipelineCreateInfo createInfo = {};

2 createInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
3 <createInfo.stageCount = arraysize (shaderStages);
4 createlInfo.pStages = shaderStages;

5 createInfo.pVertexInputState = &vertexInputInfo;

6 createInfo.pInputAssemblyState = &inputAssemblyState;

7 createInfo.pTessellationState = nullptr;

8 <createInfo.pViewportState = &viewportState;

9 <createInfo.pRasterizationState = &rasterizationState;

10 createInfo.pMultisampleState = &multisamplingState;

11 createInfo.pDepthStencilState = &depthStencilState;

12 createInfo.pColorBlendState = &colorBlendState;

13 <createInfo.pDynamicState = nullptr;

14 createInfo.layout = pipelinelLayout;

15 <createInfo.renderPass = renderPass;

16 createInfo.subpass = 0;

Listing 4.2: Configure pipeline state object

renderPass is a handle to a render pass object describing the environment
in which the pipeline will be used. subpass is the index of the subpass in the
render pass where this pipeline will be used. We will explain the meaning of the
remaining relevant struct fields in the next sections.

4.1.2 Shader Stages

We specify a collection of all shader stages and shader programs that will be
used during rendering.

1 VkPipelineShaderStageCreateInfo shaderStages[] =
2 {

3 vertShaderStagelInfo,

4 fragShaderStagelInfo,

5 1

Listing 4.3: Shader stages

VkPipelineShaderStageCreatelnfo

In our case we need two instances of a VkPipelineShaderStageCreateInfo
struct that describe our vertex and our fragment shader stages.
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VkPipelineShaderStageCreateInfo stageInfo = {};
2 stageInfo.sType =
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;

3 stagelnfo.stage = stage;
4 stageInfo.module = shaderModule;
5 stageInfo.pName = "main'";

Listing 4.4: Describe a shader stage

stage is a VkShaderStageFlagBits value specifying the pipeline stage.
module is a shader module object containing the shader for this stage. pName is
a string specifying the entry point name of the shader for this stage.

In order to create our vertex shader stage we need to pass the shader module
that contains our vertex shader code and use the VK_SHADER_STAGE_VERTEX_BIT
stage flag bit. In order to create our fragment shader stage we need to
pass the shader module that contains our fragment shader code and use the
VK_SHADER_STAGE_FRAGMENT BIT stage flag bit.

VkShaderModule

To create a shader module we need to load our shader code written in SPIR-V
binary format. Then, we simply use vkCreateShaderModule. After creating
our shader module, we can discard our loaded shader code.

const char* shaderPath = "path/to/shader.spv";
u32 codeSize = GetFileSize(shaderPath);
u8* codeData = LoadFile(shaderPath, codeSize);

VkShaderModuleCreateInfo createInfo = {};

createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
createInfo.codeSize = codeSize;

createInfo.pCode = (u32%) (codeData);
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10 VkShaderModule shaderModule = VK_NULL_HANDLE;
11 vkCreateShaderModule (device, &createInfo, nullptr, shaderModule) ;

13 free(codeData);
14 codeSize = 0;

Listing 4.5: Create a shader module

In our case, we create one shader module for our vertex shader and one
shader module for our fragment shader.

Vertex Shader Code

We write our vertex shader in GLSL. We use a .vert file extension. The built
in gl VertexIndex variable contains the index of the current vertex. This is
usually an index into the vertex buffer, but in our case it will be an index into
an hardcoded array of vertex data. We will see how to upload vertex data later.
The built in variable gl_Position functions as the output.
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#version 450
#extension GL_KHR_vulkan_glsl : enable

vec2 positions[3] = vec2[]
(
vec2(+0.0, -0.5),
vec2(+0.5, +0.5),
vec2(-0.5, +0.5),

0O~ O Ut W

9 );

10

11 void main()

12 {

13 gl_Position = vec4(positions[gl_VertexIndex], 0.0, 1.0);
14

Listing 4.6: Our first vertex shader

Fragment Shader Code

We write our fragment shader in GLSL. We use a .frag file extension. Unlike
gl Position in the vertex shader, there is no built in variable to output a color
for the current fragment. We have to specify our own output variable. The
color yellow is written to this outColor variable.

#version 450
layout (location = 0) out vec4d outColor;

{

1

2

3

4

5 void main()
6

7 outColor = vec4(1.0, 1.0, 0.0, 1.0);
8

}
Listing 4.7: Our first fragment shader

Compiling GLSL To SPIR-V

Since we write our shaders in GLSL, we need to compile them into SPIR-V
binary format. The compiler that does this is shipped together with the Vulkan
SDK.

Cleanup

After the pipeline state object is created, we can destroy the shader modules
we created using vkDestroyShaderModule.

4.1.3 Vertex Input State

We use a VkPipelineVertexInputStateCreateInfo struct to configure the ver-
tex input state of the pipeline object we are about to create.

This struct describes the format of the vertex data that will be passed to
the vertex shader. Here we don’t have any vertex data.
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1 VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
2 vertexInputInfo.sType =
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;

Listing 4.8: Configure vertex input state

4.1.4 Input Assembly State

We use a VkPipelineInputAssemblyStateCreateInfo struct to configure the
input assembly state of the pipeline object we are about to create.

This struct describes how vertices are assembled into primitives. In our
case, the vertex data we have hardcoded into our vertex shader specifies a list
of triangles.

1 VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = {};
2 inputAssemblyState.sType =

VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
3 inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;

Listing 4.9: Configure input assembly state

4.1.5 Viewport State

We use a VkPipelineViewportStateCreateInfo struct to configure the view-
port state of the pipeline object we are about to create.
1 VkPipelineViewportStateCreateInfo viewportState = {};

2 viewportState.sType =
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;

3 viewportState.viewportCount = 1;
4 viewportState.pViewports = &viewport;
5 viewportState.scissorCount = 1;
6 viewportState.pScissors = &scissor;
Listing 4.10: Configure viewport state
Viewports

The pViewports struct field is an array of viewports that will be used by our
pipeline. A viewport describes what part of the image (or texture, or window)
we want to draw. In our case we want to draw the entire image. The graphics
pipeline also uses viewports to transform normalized device coordinates into
screen coordinates.

VkViewport viewport = {};

// the viewport’s upper left corner (x,y)

viewport.x = 0.0f;

viewport.y = 0.0f;

// viewport’s width and height

viewport.width = (£32) (swapchainImageExtent.width);
viewport.height = (£32) (swapchainImageExtent.height);
// the depth range for the viewport

viewport.minDepth = 0.0f;

viewport.maxDepth = 1.0f;
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Listing 4.11: Viewport
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Scissors

The pScissors struct field is an array of scissor rectangles. The graphics
pipeline uses these rectangles to decide which fragments to discard. Any pixels
outside the scissor rectangles will be discarded by the rasterizer. In our case we
don’t discard any fragments.

1 VkRect2D scissor = {};
2 scissor.offset.x = 0;
3

4

scissor.offset.y = 0;

scissor.extent swapchainImageExtent;

Listing 4.12: Scissor

4.1.6 Rasterization State

We use a VkPipelineRasterizationStateCreateInfo struct to configure the
rasterization state of the pipeline object we are about to create.

This struct describes how polygons are going to be rasterized (changed into
fragments). The rasterizer takes the geometry that is shaped by the vertices
from the vertex shader and turns it into fragments to be colored by the fragment
shader. The rasterizer also performs depth testing, face culling and the scissor
test.

1 VkPipelineRasterizationStateCreateInfo rasterizationState = {};
2 rasterizationState.sType =
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;

3 rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
4 rasterizationState.lineWidth = 1.0f;

Listing 4.13: Rasterization state
polygonMode determines how fragments are generated for geometry. Using

any mode other than fill requires enabling a GPU feature. 1ineWidth describes
the width of rasterized line segments.

4.1.7 Multisample State

We use a VkPipelineMultisampleStateCreateInfo struct to configure the
multisample state of the pipeline object we are about to create. We don’t
use multisampling here.

1 VkPipelineMultisampleStateCreateInfo multisamplingState = {};

2 multisamplingState.sType =

VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
3 multisamplingState.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;

Listing 4.14: Multisample state

4.1.8 Depth Stencil State

We use a VkPipelineDepthStencilStateCreateInfo struct to configure the
depth stencil state of the pipeline object we are about to create. We neither use
depth testing nor stencil testing here.
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VkPipelineDepthStencilStateCreateInfo depthStencilState = {};

2 depthStencilState.sType =
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;

3 depthStencilState.depthTestEnable = VK_FALSE;

4 depthStencilState.stencilTestEnable = VK_FALSE;

Listing 4.15: Depth stencil state

4.1.9 Color Blend State

We use a VkPipelineColorBlendStateCreateInfo struct to configure the color
blend state of the pipeline object we are about to create.

After a fragment shader has returned a color, it needs to be combined with
the color that is already in the framebuffer. This transformation is known as
color blending.

1 VkPipelineColorBlendStateCreateInfo colorBlendState = {};
2 colorBlendState.sType =
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;

colorBlendState.attachmentCount = 1;
4 colorBlendState.pAttachments = &colorBlendAttachmentState;

Listing 4.16: Color blend state

w

pAttachments is an array of of VkPipelineColorBlendAttachmentState
structures defining blend state for each color attachment.

VkPipelineColorBlend AttachmentState

We have to configure how color blending works for every color attachment in
our framebuffer. Since we have only one color attachment, we need only one
description. In our case, we don’t use color blending. We simply write all the
color components to the framebuffer as they are.

1 VkPipelineColorBlendAttachmentState colorBlendAttachmentState = {};
2 colorBlendAttachmentState.blendEnable = VK_FALSE;

3 colorBlendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT

| VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT |
VK_COLOR_COMPONENT_A_BIT;

Listing 4.17: Color blend attachment state

blendEnable controls whether blending is enabled for the corresponding
color attachment. If blending is not enabled, the source fragment’s color for
that attachment is passed through unmodified.

colorWriteMask is a bitmask specifying which of the R, G, B, and/or A
components are enabled for writing. This bitmask determines whether the final
color values R, G, B and A are written to the framebuffer attachment.

4.1.10 Pipeline Layout

Before creating our pipeline, we need to define its layout. We do this by creating
a pipeline layout object.

49



1 VkPipelinelLayout pipelinelayout = VK_NULL_HANDLE;
2 vkCreatePipelinelayout (device, &createlInfo, nullptr, &
pipelinelayout)

Listing 4.18: Create our pipeline layour

VkPipelineLayoutCreatelnfo

We use a VkPipelineLayoutCreateInfo struct to configure the pipeline layout
we are about to create. In this scenario we can ignore the pipeline layout. We
will use it in later chapters.

1 VkPipelinelLayoutCreateInfo createInfo = {};
2 createInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;

Listing 4.19: Configure our pipeline layout

4.1.11 Cleanup

We first destroy our pipeline state object using vkDestroyPipeline. Then, we
destroy our pipeline layout using vkDestroyPipelineLayout.

4.2 Use Our Pipeline To Draw A Triangle

Now that we have created our pipeline state object, we can use it to set the
graphics pipeline current state. Then we can tell our graphics pipeline to draw
three vertices. This will lead to our triangle being rendered.

1 // begin render pass

2

3 kamdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeline);

4 vkCmdDraw (

5 commandBuffer,

6 3, // number of vertices to draw

7 1, // number of instances to draw (we don’t use instancing)

8 0, // index of the first vertex to draw

9 0 // instance ID of the first instance to draw

10 )

11

12 // end render pass
Listing 4.20: Rendering our triangle
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Chapter 5

Shader Local Data: Vertices

In this chapter we see how to pass per-vertex data to our vertex shader. To
accomplish this task we introduce the concept of vertex buffer. We also have an
in depth look at a technique that allows us to get the most performance out of
a vertex buffer. At the end, we use the vertex data stored in our vertex buffer
to render a quad.

Figure 5.1: Rendering a quad

5.1 Vertex Data

In this section we define the vertex data that we will use to draw our quad. We
first define the structure of a single vertex. After that, we lay out the quad’s
vertices.

5.1.1 Vertex

In our case, a vertex stores its 2D position in normalized device coordinates and
its color.
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1 struct Vertex

2 {

3 glm::vec2 position;
4 glm::vec3 color;

5 1}

Listing 5.1: Data we store per vertex

5.1.2 Vertex Data

Here we want to draw a quad. The problem is that we can only render triangles.
We solve this issue by building our quad using two triangles. Hence, to define
our quad, we need six vertices. These are the vertices that will be later uploaded
to the GPU and be used by the graphics pipeline.

1 Vertex vertices[] =

2 1

3 {{ -0.5¢, -0.5¢f }, { 1.0f, 0.0f, 0.0f } },
4 { { +0.5¢f, -0.5f }, { 0.0f, 1.0f, 0.0f } },
5 { { +0.5f, +0.5f }, { 0.0f, 0.0f, 1.0f } },
6 { { +0.5¢f, +0.5f }, { 0.0f, 0.0f, 1.0f } },
7 {{ -0.5¢, +0.5f }, { 0.0f, 1.0f, 0.0f 1} },
8 {{ -0.5¢, -0.5¢ }, { 1.0f, 0.0f, 0.0f } },
9 };

Listing 5.2: The vertices that our application will use

5.2 Shaders

We need to write a new vertex and a new fragment shaders. We need a new
vertex shader because we don’t use hardcoded vertex data anymore. We need
a new fragment shader because we want to color the generated fragments using
the vertex color.

5.2.1 Vertex Shader

Our vertex shader takes as input a position value and a color value. We also
want to pass the vertex color to the fragment shader.

1 #version 450

2

3 layout(location = 0) in vec2 inPosition;
4 layout(location = 1) in vec3 inColor;

5

6 layout(location = 0) out vec3 outColor;

7

8 void main()

9 {

10 gl_Position = vec4(inPosition, 0.0, 1.0);
11 outColor = inColor;

12 ¥

Listing 5.3: Our new vertex shader
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5.2.2 Fragment Shader

Our fragment shader now takes as input the fragment’s color. We use this value
to color our fragment.

1 #version 450

2

3 layout(location = 0) in vec3 inColor;
4

5 1layout(location = 0) out vec4 outColor;
6

7 void main ()

8 {

9 outColor = vec4(inColor, 1.0);

0o }

=

Listing 5.4: Our new fragment shader

5.3 Upload Vertex Data To The GPU

Before rendering our quad, we must upload its vertex data to the GPU. This
data will be later passed as input to the graphics pipeline.

5.3.1 Understanding The Problem

Uploading data to the GPU means copying bytes from RAM to GPU memory.
The issue is that we don’t know what kind of GPU memory we want to use.

Modern GPUs have different types of memory. Each GPU memory type
has also different memory properties. There are two memory properties that
interest us. Host visible memory and device local memory.

A host visible memory is a GPU memory that can be mapped to the appli-
cation’s address space. A device local memory is a GPU memory that cannot
be mapped to the application’s address space.

A host visible memory will always be orders of magnitude slower than a
device local one. This is due to the fact that a host visible memory must be
visible from both CPU and GPU side. This requires particular care from the
driver or from the programmer to keep the data consistent.

Keeping in mind that we don’t directly change vertex data at run time, and
that we use said data every frame, we would love to use a memory type that
is device local. This would improve performance. The problem is that we still
need to upload the vertex data to our GPU, and to accomplish this task we can
only use a memory that is host visible.

5.3.2 Our Solution: Idea

One solution to this problem is to use two buffers. One buffer, called a staging
buffer, will be allocated on host visible GPU memory. We use this staging
buffer to upload data to the GPU. The other buffer, called vertex buffer, will be
allocated on device local GPU memory. After uploading our data to the staging
buffer, we issue a memory transfer command to our GPU. This command, when
executed, will copy the staging buffer’s contents into the vertex buffer. Later,
our vertex buffer will be used by the graphics pipeline for rendering.
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5.3.3 How To Create A Buffer

Before implementing our solution we need to know how to cerate a buffer using
Vulkan. Buffer creation is divided into three steps. We first create a buffer
object. Then, we allocate the buffer’s memory. Finally, we bind the buffer’s
memory to the buffer object.

Create Buffer Object

The only parameter that can puzzle people is sharingMode. This is the buffer’s
sharing mode when it will be accessed by multiple queue families. Our buffers
are only used by the graphics queue. Thus, we use the more performant exclusive
sharing mode.

VkBufferCreateInfo info = {};

info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
info.size = size; // buffer’s size in bytes
info.usage = usage; // buffer’s usage

info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

VkBuffer buffer = VK_NULL_HANDLE;
vkCreateBuffer (device, &info, nullptr, &buffer);

Listing 5.5: Create a buffer object
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Allocate Buffer Memory

Allocating GPU memory requires some work. This is due to the fact that
modern GPUs have many different types of memories. An added complexity is
also caused by the fact that we want our buffer memory to satisfy a given set
of memory properties (host visible, device local, etc ...).

1 // Bitmask specifying the properties that we want

2 // our buffer memory to have

3 VkMemoryPropertyFlags properties = ...;

4

5 // Query the memory requirements for our buffer

6 VkMemoryRequirements memoryRequirements = {};

7 vkGetBufferMemoryRequirements (device, buffer, &memoryRequirements);

8

9 VkMemoryAllocateInfo info = {};

10 info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;

11 info.allocationSize = memoryRequirements.size;

12 info.memoryTypeIndex = FindMemoryType (physicalDevice,
memoryRequirements.memoryTypeBits, properties);

13

14 VkDeviceMemory memory = VK_NULL_HANDLE;
15 vkAllocateMemory(device, &info, nullptr, memory);

Listing 5.6: Allocate buffer memory

We first need to query our buffer memory requirements. The query’s result
contains the set of all memory types that are compatible with our buffer.

With this information at hand, we pick a memory type on which we will allo-
cate our buffer memory. Remember that the memory type we pick must satisfy
the memory properties that we require. In order to make this process simpler, we
use an auxiliary function called FindMemoryType. We use vkAllocateMemory
to allocate our buffer memory.
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1 u32 VexFindMemoryType

2 (

3 VkPhysicalDevice physicalDevice,

4 u32 supportedMemoryTypes,

5 VkMemoryPropertyFlags requiredMemoryProperties

6 )

7 Ao

8 // Get the available types of memory

9 VkPhysicalDeviceMemoryProperties memoryProperties = {};
10 vkGetPhysicalDeviceMemoryProperties(

11 physicalDevice,

12 &memoryProperties

13 )5

14

15 // Find a memory type that is supported

16 for (u32 i = 0; i < memoryProperties.memoryTypeCount; i++)
17 {

18 bool isMemoryTypeSupported =

19 (supportedMemoryTypes & (1 << i));

20

21 VkMemoryPropertyFlags memoryTypeProperties =

22 memoryProperties.memoryTypes [i].propertyFlags;
23

24 bool areRequiredMemoryPropertiesSupported =

25 ((memoryTypeProperties & requiredMemoryProperties) ==
26 requiredMemoryProperties) ;

27

28 if (isMemoryTypeSupported &&

29 areRequiredMemoryPropertiesSupported)

30 {

31 return 1i;

32 }

33 }

34

35 assert (false, "Failed to find a suitable memory type");
36

37 return O0;

38 }

Listing 5.7: Find suitable memory type index

Bind Buffer Object And Memory

We use vkBindBufferMemory to bind the buffer’s object and buffer’s memory
together.

5.3.4 Our Solution: Implementation

Now that we know how to allocate a buffer, we can see how our solution is
implemented.

Create A Staging Buffer

We use the VK_BUFFER_USAGE_TRANSFER_SRC_BIT flag because our buffer will be
used by the GPU as a source for transfer operations.

We use the VK_MEMORY_PROPERTY _HOST_VISIBLE BIT flag because we want
our buffer to be host visible.
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We use the VK_MEMORY_PROPERTY_HOST_COHERENT BIT flag because we don’t
want to manually flush our buffer memory.

1 VkBuffer stagingBufferObject = VK_NULL_HANDLE;

2 VkDeviceMemory stagingBufferMemory = VK_NULL_HANDLE;

3 u32 stagingBufferSizeInBytes = vertexBufferSizelInBytes;

4 CreateBuffer

5 «(

6 physicalDevice,

7 device,

8 stagingBufferSizeInBytes,

9 VK_BUFFER_USAGE_TRANSFER_SRC_BIT,

10 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,

11 &stagingBufferObject,

12 &stagingBufferMemory

13 )3

Listing 5.8: Crete staging buffer

Upload Vertex Data To The Staging Buffer

Uploading the vertex data to our staging buffer is very simple. We map the
staging buffer memory into our application’s address space. We copy the data.
We unmap the previously mapped memory.

1 void* data = nullptr;

2 vkMapMemory (device, stagingBufferMemory, O,
stagingBufferSizeInBytes, 0, &data);

memcpy (data, vertices, stagingBufferSizeInBytes);

4 vkUnmapMemory (device, stagingBufferMemory);

w

Listing 5.9: Upload our vertex data to the staging buffer

Create The Vertex Buffer

We use the VK_BUFFER_USAGE_TRANSFER DST _BIT flag because our buffer will be
used by the GPU as a destination for transfer operations.

We use the VK_BUFFER_USAGE_VERTEX_BUFFER BIT flag because our buffer
will be used by the GPU as a vertex buffer.

We use the VK_MEMORY_PROPERTY DEVICE_LOCAL_BIT flag because we want
our buffer to be device local.

1 VkBuffer vertexBufferObject = VK_NULL_HANDLE;

2 VkDeviceMemory vertexBufferMemory = VK_NULL_HANDLE;

3 u32 vertexBufferSizeInBytes = sizeof (*vertices) * arraysize(
vertices);

4 VexCreateBuffer

5 (

6 physicalDevice,

7 device,

8 vertexBufferSizelInBytes,

9 VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,

10 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
11 &vertexBufferObject,

12 &vertexBufferMemory

13 );

Listing 5.10: Create vertex buffer

56



Allocate Command Buffer

We allocate a command buffer from our graphics command pool. Is it ok to
use the graphics command pool to execute transfer commands? Yes, because
all graphics queues always support transfer commands.

VkCommandBuffer commandBuffer = VK_NULL_HANDLE;
vkAllocateCommandBuffers (device, &info, &commandBuffer);

1 VkCommandBufferAllocateInfo info = {};

2 info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
3 info.commandPool = graphicsCommandPool;

4 info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;

5 info.commandBufferCount = 1;

6

7

8

Listing 5.11: Allocate our transfer command buffer

Record Copy Command

Now we record the memory copy command into our command buffer. We are
telling our GPU to copy copyRegion.size bytes from our staging buffer to our
vertex buffer.

VkCommandBufferBeginInfo info = {};
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
vkBeginCommandBuffer (commandBuffer , &info);
{
VkBufferCopy copyRegion = {};
copyRegion.size = vertexBufferSizeInBytes;
vkCmdCopyBuffer (commandBuffer, stagingBufferObject,
vertexBufferObject, 1, &copyRegion);
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9 }
10 vkEndCommandBuffer (commandBuffer);

Listing 5.12: Record copy command into our command buffer

Submit Command Buffer

Now we have to submit our command buffer to the GPU graphics queue. Doing
this will start the execution of our copy command.

VkSubmitInfo info = {};

info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
info.commandBufferCount = 1;

info.pCommandBuffers = &commandBuffer;

vkQueueSubmit (graphicsQueue, 1, &info, VK_NULL_HANDLE);

TU W N~

Listing 5.13: Submit transfer command buffer

Wait For The Command Buffer Execution To Finish

For simplicity’s sake, we wait for our transfer command to finish before contin-
uing the execution of our application. To do this we call vkQueueWaitIdle on
our graphics queue. This is not a performance issue, since we should be doing
this only during the application’s setup phase.
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Cleanup

We free our command buffer using vkFreeCommandBuffers. We do this since
we won’t be using it anymore. We also destroy our staging buffer using
vkFreeMemory and vkDestroyBuffer. While the application is shutting down
we must also free the previously allocated vertex buffer.

5.3.5 Review The Process

Here we can see some pseudocode that outlines all the steps necessary to create
a vertex buffer.

—

void CreateVertexBuffer(...)
{
// Create staging buffer
// Upload vertex data to the staging buffer
Create vertex buffer
// Issue a copy command
// Wait for the copy to finish
// Cleanup
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Listing 5.14: Steps for creating our vertex buffer

5.4 Pipeline Vertex Input State

During the creation of a pipeline state object, we must spec-
ify the format of the vertex input data. To do this we use a
VkPipelineVertexInputStateCreatelnfo struct.

VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};

vertexInputInfo.sType =
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;

vertexInputInfo.vertexBindingDescriptionCount =
arraysize(bindingDescriptions);

vertexInputInfo.pVertexBindingDescriptions =
bindingDescriptions;

vertexInputInfo.vertexAttributeDescriptionCount =
arraysize (attributeDescriptions);

vertexInputInfo.pVertexAttributeDescriptions =
attributeDescriptions;
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Listing 5.15: Describe the pipeline input data

pVertexBindingDescriptions is an array of vertex input binding descrip-
tions. pVertexAttributeDescriptions is an array of vertex input attribute
descriptions.

5.4.1 Binding Descriptions

A VkVertexInputBindingDescription struct has three fields. binding is the
binding number that this structure describes. stride is the number of bytes
between consecutive elements within the vertex buffer. inputRate is a value
that specifies whether vertex attribute addressing is a function of the vertex
index or of the instance index.

Some of you may be wondering: what is a vertex input binding? Before
recording a draw command into a command buffer, we must bind a vertex
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buffer in order for our pipeline to use it. We use vkCmdBindVertexBuffers to
do this. This function takes an array of buffers. This is because our pipeline
can get vertex data from multiple buffers at the same time. binding is an index
into the pBuffers array bound by vkCmdBindVertexBuffers.

In our case, all the vertex data is packed together and comes from a single
buffer. Hence, we only have one binding description.

VkVertexInputBindingDescription bindingDescription = {};
bindingDescription.binding = 0;
bindingDescription.stride = sizeof (Vertex);

bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

VkVertexInputBindingDescription bindingDescriptions[] =
{

bindingDescription,
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};

Listing 5.16: Describe our vertex input bindings

5.4.2 Attribute Descriptions

A vertex attribute is an input variable that is supplied per-vertex to a shader. In
our case, for each vertex, we pass into our shader a position and a color. Hence,
for us, a vertex has two attributes: a position attribute and a color attribute.

Before creating our pipeline state object we must describe all our vertex
attributes. We do this using an array of VkVertexInputAttributeDescription
struct instances.

1 VkVertexInputAttributeDescription positionAttributeDescription =

{};
2 positionAttributeDescription.location = O0;
3 positionAttributeDescription.binding = 0;
4 positionAttributeDescription.format = VK_FORMAT_R32G32_SFLOAT;
5 positionAttributeDescription.offset = offsetof(Vertex, position);
6
7 VkVertexInputAttributeDescription colorAttributeDescription = {};
8 colorAttributeDescription.location = 1;

9 colorAttributeDescription.binding = O0;
10 colorAttributeDescription.format = VK_FORMAT_R32G32B32_SFLOAT;
11 colorAttributeDescription.offset = offsetof (Vertex, color);

13 VkVertexInputAttributeDescription attributeDescriptions[] =
14 {

15 positionAttributeDescription,
16 colorAttributeDescription,
17 3}

Listing 5.17: Describe our vertex input attributes

location is the shader input location number for this attribute. We have
seen this value earlier when we wrote layout(location = 0) in our vertex
shader. binding is the binding number from which this attribute takes its data.
format is the size and type of the vertex attribute data. offset is the byte
offset of this attribute relative to the start of an element in the vertex input
binding.
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5.5 Draw Using Our Vertex Data

The only missing thing now is to tell Vulkan to use our vertex data for rendering
operations. We do this during the command buffer recording.

1 // Begin render pass

2

3 // Bind our pipeline state object

4

5 VkBuffer buffers[] = { vertexBufferObject 1I};

6 VkDeviceSize offsets[] = { 0 };

7 vkCmdBindVertexBuffers (commandBuffer, 0, 1, buffers, offsets);
8

9 vkCmdDraw(commandBuffer ,arraysize(vertices), 1, 0, 0);
0

1 // End render pass

Listing 5.18: Draw quad using our vertex data

60



Chapter 6

Shader Global Data:
Uniforms

In this chapter we see how to pass global data to our vertex shader. We can do
this using one or more uniforms. We upload uniform data to a vertex shader
using a uniform buffer. At the end, we use our uniforms to rotate the quad and
render it using a perspective camera.

Ep—

Figure 6.1: Rendering a quad using a perspective camera

6.1 Uniform Data

In this section we define the uniform data that we use to draw our quad.

6.1.1 Uniforms

In our case, we use three uniforms: a model matrix, a view matrix, and a
projection matrix.
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1 glm::mat4 model;
2 glm::mat4 view;
3 glm::mat4 projection;

Listing 6.1: Data that will be globally available to our shaders

6.1.2 Uniform Buffer Data

Every frame we update our uniforms as follows.

1 model = glm::rotate(

2 glm::mat4(1.0f),

3 timeSinceStart * glm::radians(90.0f),
4 glm::vec3(0.0f, 0.0f, 1.0f)

5 )

6

7 view = glm::lookAt(

8 glm::vec3(2.0f, 2.0f, 2.0f),

9 glm::vec3(0.0f, 0.0f, 0.0f),

10 glm::vec3(0.0f, 0.0f, 1.0f)

11 )

12

13 £32 aspect = (£f32)(swapchainImageExtent.width) /
14 (£32) (swapchainImageExtent .height);
15

16 projection = glm::perspective(

17 glm::radians (45.0f),

18 aspect,

19 0.1f, 10.0f

20 )

21

22 // Perspective matrix correction (only for glm)
23 wubo.projection[1][1] *= -1;

Listing 6.2: Updating uniforms during the application’s main loop

We use our model matrix to continuously rotate the quad based on the
amount of time since the application has started. We use our view matrix to
represent a camera with position at coordinates (2,2, 2), looking at (0,0,0) and
with (0,0, 1) as up vector. We use our projection matrix to define the frustum
of our camera. Here we use a perspective projection with a field of view of
45 degrees, an aspect ratio based on the swapchain image, and a near and far
planes of 0.1 and 10 respectively.

6.1.3 Vertex Shader

We must update the vertex shader for us to use our uniform data. In our case,
we use a single uniform buffer containing our uniforms.
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#version 450

0) in vec2 inPosition;
1) in vec3 inColor;

layout (location
layout (location

layout (location = 0) out vec3 outColor;
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layout (set = 0, binding = 0) uniform UBO

9 {

10 mat4 model;

11 mat4 view;

12 mat4 projection;

13 } ubo;

14

15 void main()

16 {

17 gl_Position = ubo.projection * ubo.view * ubo.model *
18 vec4 (inPosition, 0.0, 1.0);
19

20 outColor = inColor;

21}

Listing 6.3: Vertex shader that uses our uniforms

In the vertex shader, we transform the vertex position using our matrices.
This is the usual way in which we change vertex data. Instead of directly
modifying vertices, we use one or more matrices that define the transformation

we want. This computation is very fast because it’s executed concurrently on
the GPU.

6.2 Upload Uniform Data To The GPU

Uniform data usually changes very frequently, even on a frame by frame basis.
This being the case, every time our uniforms change, we upload them to the
GPU to make the change visible to the shaders that use them. We use a buffer
to upload uniform data to the GPU. Such buffer is called a uniform buffer.

6.2.1 Uniform Buffer Layout

Before creating a uniform buffer, we declare its layout. In our case, since we
have three uniforms, we pack them together inside a uniform buffer.

1 struct UBO

2 {

3 glm::mat4 model;

4 glm::mat4 view;

5 glm::mat4 projection;

6

};
Listing 6.4: Uniform buffer definition

6.2.2 Uniform Buffer Creation

We use the VK_BUFFER_USAGE_UNIFORM_BUFFER BIT flag because our buffer will
be used by the GPU as a uniform buffer.
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We use the VK_MEMORY_PROPERTY _HOST_VISIBLE BIT flag because we want
our buffer to be host visible. This is due to the fact that we upload our uniforms
to the uniform buffer every frame.

We use the VK_MEMORY _PROPERTY_HOST_COHERENT BIT flag because we don’t
want to manually flush our buffer memory.

1 VkBuffer uniformBufferObject = VK_NULL_HANDLE;
2 VkDeviceMemory uniformBufferMemory = VK_NULL_HANDLE;
3 u32 uniformBufferSizeInBytes = sizeof (UBO);
4 VexCreateBuffer
5 (
6 physicalDevice,
7 device,
8 uniformBufferSizeInBytes,
9 VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
10 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
11 &uniformBufferObject,
12 &uniformBufferMemory
13 );
Listing 6.5: Uniform buffer creation
Cleanup

We use vkFreeMemory and vkDestroyBuffer to clean up a uniform buffer.

6.2.3 Upload Uniform Data

We upload our uniform data simply by writing it into our uniform buffer.

UBO ubo = {};

ubo.model = model;

ubo.view = view;
ubo.projection = projection;

void* data = nullptr;

memcpy (data, &ubo, sizeof (ubo));
vkUnmapMemory (device, uniformBufferMemory) ;
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Listing 6.6: Upload uniforms to the uniform buffer

6.2.4 Uniform Buffer Data Alignment

Vulkan expects the data in our uniform buffer to be aligned in memory in a
specific way. You can find the full list of alignment requirements in the Vulkan
specification. Here follows a brief list of the most important requirements.

e Scalars have to be aligned by N (for example, 4 bytes for £32 values)
e A vec2 must be aligned by 2N

e A vec3 or vec4d must be aligned by 4N

A structure must be aligned by the base alignment of its members rounded
up to a multiple of 16

A mat4 matrix must have the same alignment as a vec4
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6.3 Update Pipeline Layout

We must inform our pipeline that we are using one or more uniforms. To do
this we update our pipeline layout.

6.3.1 VkPipelineLayout

A pipeline layout can be seen as an interface between shader stages and shader
resources as it takes these groups of resources, describes how they are gathered,
and provides them to the pipeline.

VkDescriptorSetLayout descriptorSetLayouts[] =
{
pipelineDescriptorSetLayout,

};

VkPipelineLayoutCreateInfo info = {};

info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
info.setLayoutCount = arraysize(descriptorSetLayouts);

9 info.pSetLayouts = descriptorSetLayouts;
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11 VkPipelinelayout pipelineLayout = VK_NULL_HANDLE;
12 vkCreatePipelinelayout (device, &info, nullptr, &pipelineLayout);

Listing 6.7: Update pipeline layout creation

6.3.2 Descriptor Set Layout

We use a VkDescriptorSetLayout object to tell the number and the types of
global resources that are available to our pipeline shaders.

1 VkDescriptorSetLayout pipelineDescriptorSetLayout = VK_NULL_HANDLE;

2 vkCreateDescriptorSetLayout (device, &info, nullptr,
3 &pipelineDescriptorSetLayout));

Listing 6.8: Describe pipeline global resources

VkDescriptorSetLayoutCreatelnfo

We use a VkDescriptorSetLayoutCreateInfo struct to configure the descriptor
set layout we are about to create.

VkDescriptorSetLayoutCreateInfo info = {};

info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
info.bindingCount = arraysize(bindings);

info.pBindings = bindings;

=W N

Listing 6.9: Descriptor set layout configuration

Descriptor Set Layout Bindings

We use a VkDescriptorSetLayoutBinding to describe, for a given type, how
many resources are globally available to our pipeline. In our application we use
only one uniform buffer accessed from the vertex shader.
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VkDescriptorSetLayoutBinding uniformBufferBinding = {};
uniformBufferBinding.binding = 0;
uniformBufferBinding.descriptorType =
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
uniformBufferBinding.descriptorCount = 1;
uniformBufferBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT,;

W N =

VkDescriptorSetLayoutBinding bindings[] =
{

uniformBufferBinding
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};
Listing 6.10: Descriptor set layout bindings

binding is the binding number of this entry and corresponds to a resource
of the same binding number in the shader stages. We have seen this binding
number in our vertex shader when we wrote layout(set = 0, binding
= 0) uniform UBO to access the uniform buffer. descriptorType is a
VkDescriptorType specifying which type of resource descriptors are used for
this binding. descriptorCount is the number of resources contained in the

binding. stageFlags is a bitmask of VkShaderStageFlagBits specifying
which pipeline shader stages can access a resource for this binding

Cleanup

We use vkDestroyDescriptorSetLayout do destroy a descriptor set layout.

6.4 Descriptor Set

A descriptor set is an object that contains all the physical resources that are
globally available to a set of pipeline shader stages. We allocate a descriptor set
from a descriptor pool. Then we populate the descriptor set with one or more
resources.

6.4.1 Descriptor Set Allocation

We allocate a descriptor set with vkAllocateDescriptorSets.

1 VkDescriptorSet pipelineDescriptorSet = VK_NULL_HANDLE;
2 vkAllocateDescriptorSets(device, &info, &pipelineDescriptorSet);

Listing 6.11: Allocate a descriptor set

6.4.2 VkDescriptorSetAllocatelnfo

We use a VkDescriptorSetAllocateInfo struct to configure the descriptor set
we are about to create.
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VkDescriptorSetLayout setLayouts[] =
{
pipelineDescriptorSetLayout,

};

VkDescriptorSetAllocateInfo info = {};

info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
info.descriptorPool = pipelineDescriptorPool;
info.descriptorSetCount = arraysize(setLayouts);
info.pSetLayouts = setLayouts;
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Listing 6.12: Configure descriptor set

descriptorPool is the pool which the sets will be allocated from.
descriptorSetCount determines the number of descriptor sets to be allocated
from the pool. pSetLayouts is a pointer to an array of descriptor set layouts,
with each member specifying how the corresponding descriptor set is allocated.

6.5 Descriptor Pool

A descriptor set must be allocated from a descriptor pool. Thus, we must create
a descriptor pool before allocating a descriptor set.
1 VkDescriptorPool pipelineDescriptorPool = VK_NULL_HANDLE;

2 vkCreateDescriptorPool(device, &info, nullptr,
3 &pipelineDescriptorPool);

Listing 6.13: Create descriptor pool

6.5.1 VkDescriptorPoolCreatelnfo

We use a VkDescriptorPoolCreateInfo struct to configure the descriptor pool
we are about to create. In our case, since we use only one uniform buffer, we
create a descriptor pool from which we can allocate only one descriptor set with
one uniform buffer resource.

1 VkDescriptorPoolSize uniformBufferPoolSize = {};

2 uniformBufferPoolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
3 uniformBufferPoolSize.descriptorCount = 1;

4

5 VkDescriptorPoolSize poolSizes[] =

6 {

7 uniformBufferPoolSize,

8 };

9

10 VkDescriptorPoolCreateInfo info = {};

11 info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
12 info.maxSets = 1;

13 info.poolSizeCount = arraysize(poolSizes);

14 info.pPoolSizes = poolSizes;

Listing 6.14: Configure descriptor poll creation

maxSets is the maximum number of descriptor sets that can be allocated
from the pool. pPoolSizes is a pointer to an array of VkDescriptorPoolSize
structures, each containing a descriptor type and the number of resources of
that type that will be allocated in total from the pool.
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6.5.2 Populate Descriptor Set

Once we have allocated a descriptor set, we have to populate it with resources.
This means writing into the descriptor set. We use vkUpdateDescriptorSets
for this task.

1 VkWriteDescriptorSet descriptorWrites[] =
2 {

3 descriptorWrite,

4 3}

5

6

vkUpdateDescriptorSets (device, arraysize(descriptorWrites),
descriptorWrites, 0, nullptr);

Listing 6.15: Populate descriptor set

6.5.3 VkWriteDescriptorSet

We use a VkWriteDescriptorSet struct to configure the descriptor write oper-
ations that we are about to execute. Here we are telling our descriptor set to
use our uniform buffer as a uniform buffer resource.

1 VkDescriptorBufferInfo info = {};

2 info.buffer = uniformBufferObject;

3 info.offset = 0;

4 info.range = uniformBufferSizeInBytes;

5

6 VkWriteDescriptorSet descriptorWrite = {};

7 descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
8 descriptorWrite.dstSet = pipelineDescriptorSet;

9 descriptorWrite.dstBinding = 0;

10 descriptorWrite.dstArrayElement = 0;

11 descriptorWrite.descriptorCount = 1;

12 descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
13 descriptorWrite.pBufferInfo = &info;

Listing 6.16: Descriptor set write

6.5.4 Cleanup

We use vkDestroyDescriptorPool to destroy a descriptor pool. All descrip-
tor sets allocated from the pool will be automatically freed when the pool is
destroyed.

6.6 Draw Using Our Uniform Data

The only thing missing now is to tell Vulkan to use our uniforms during render-
ing. To accomplish this, we tell Vulkan to use the resources that are inside our
descriptor set for rendering. We do this during our command buffer recording.
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// Begin render pass

// Bind pipeline state object
// Bind vertex buffer

vkCmdBindDescriptorSets

(
commandBuffer,
VK_PIPELINE_BIND_POINT_GRAPHICS,
pipelinelayout,
O’
1,
&pipelineDescriptorSet,
0,
nullptr

)

// Draw

// End render pass

Listing 6.17: Draw quad using our uniform data
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Chapter 7

Depth Testing

Suppose we are drawing multiple objects. To correctly render them on the screen
we have to worry about the order in which we execute our draw operations. In
particular, to get a realistic image, we must draw them in descending order,
based on their distance from the camera. We do this to give to objects near the
camera the possibility of hiding objects further away.

Although this solution works, it would require us to sort every object that
is going to be rendered using its depth. If there are moving objects, we may
have to sort them every frame. If there are a lot of them, the sorting may
require a considerable amount of time, decreasing the application’s framerate.
This solution also causes problems when two objects overlap. In this case, it’s
not possible to determine which one to render first without having graphical
artifacts.

An alternative solution that doesn’t suffer from the drawbacks illustrated
earlier, is using a depth buffer. A depth buffer is an image that stores depth
data for every pixel. Every time the rasterizer produces a fragment, the depth
test will check if the new fragment is closer than the previous one. If it isn’t,
then the new fragment is discarded. A fragment that passes the depth test
writes its own depth to the depth buffer.

Mind that this technique works only when rendering opaque objects. When
rendering semitransparent or transparent objects we would need to resort to
depth sorting to produce the correct image.
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Figure 7.1: Rendering two quads using a depth buffer

7.1 Creating A Depth Buffer

Creating a depth buffer means creating an image that will be used to store
depth values during rendering operations.

7.1.1 Creating An Image

Crating an image in Vulkan consists of four steps. We first create a VkImage
object. Then, we allocate some memory for our VkImage. We do this creating
a VkDeviceMemory object. Once we have both the image object and memory,
we bind them together using vkBindImageMemory. Finally, in order to use the
image we have created, we create a VkImageView on it.

VkImage

To create a VkImage we use vkCreateImage. Here we are creating a 2D image
of a given width and height. We also specify the image format and tiling.
These two values define the data that the image stores per pixel and how it’s
layed out in memory. Finally, we also specify the image’s usage. The images
we create will always be used only by our graphics queue. Thus, we use the
more performant exclusive sharing mode.
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1 VkImageCreateInfo info = {};

2 info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
3 info.imageType = VK_IMAGE_TYPE_2D;

4 info.format = format;

5 info.extent = { width, height, 1 };

6 info.mipLevels = 1;

7 info.arraylLayers = 1;

8 info.samples = VK_SAMPLE_COUNT_1_BIT;

9 info.tiling = tiling;

10 info.usage = usage;

11 info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

12 info.initiallLayout = VK_IMAGE_LAYOUT_UNDEFINED;
13

14 VkImage imageObject = VK_NULL_HANDLE;

15 vkCreatelImage (device, &info, nullptr, &imageObject);

Listing 7.1: Create image object

imageType tells Vulkan with what kind of coordinate system the pixels in the
image are going to be addressed. tiling can have one of two values: linear or
optimal. With linear tiling, pixels are laid out in row-major order. With optimal
tiling, pixels are laid out in an implementation defined order for optimal access.
usage is a bitmask of VkImageUsageFlagBits describing the intended usage of
the image.

VkDeviceMemory

We allocate some memory for an image object using vkAllocateMemory. Allo-
cating image memory is the same as allocating buffer memory.
1 VkMemoryRequirements memoryRequirements = {};

vkGetImageMemoryRequirements (device, imageObject, &
memoryRequirements) ;

N

3

4 VkMemoryAllocateInfo info = {};

5 info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;

6 info.allocationSize = memoryRequirements.size;

7 info.memoryTypeIndex = FindMemoryType (physicalDevice,
memoryRequirements .memoryTypeBits, properties);

8

9 VkDeviceMemory imageMemory = VK_NULL_HANDLE;

10 vkAllocateMemory(device, &info, nullptr, &imageMemory);

Listing 7.2: Allocate image memory

VkImageView

We create an image view using vkCreateImageView. Here, we create a 2D
view on an image object, specifying how to read its pixel data and which image
aspects are included in the view.
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1 VkImageViewCreateInfo info = {};

2 info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
3 1info.image = imageObject;

4 info.viewType = VK_IMAGE_VIEW_TYPE_2D;

5 info.format = format;

6 info.subresourceRange.aspectMask = aspectMask;

7 info.subresourceRange.baseMipLevel = 0;

8 info.subresourceRange.levelCount = 1;

9 info.subresourceRange.baseArraylLayer = 0;

10 info.subresourceRange.layerCount = 1;

11

12 VkImageView imageView = VK_NULL_HANDLE;

13 vkCreatelImageView(device, &info, nullptr, &imageView);

Listing 7.3: Create image View

format is the format and type used to interpret pixels in the image.
aspectMask is a bitmask of VkImageAspectFlagBits specifying which
aspect(s) of the image are included in the view.

7.1.2 Cleanup

We destroy na image view with vkDestroyImageView. Then we call
vkDestroyImage and vkFreeMemory to clean up the resources we acquired to
create an image.

7.1.3 Depth Image Creation

Now that we know how to create an image, we can create our depth image. A
depth image should have the same resolution as our swapchain images. It must
have an appropriate image usage to be used as a depth buffer. It should use
optimal tiling and have device local memory, supporting fast read and write
operations. The image should have one of the following formats:

e VK_FORMAT D32_SFLOAT using 32 bits for depth data

e VK_FORMAT D32_SFLOAT_S8_UINT using 32 bits for depth data and 8 for
stencil data

e VK_FORMAT D24 _UNORM_S8_UINT using 24 bits for depth data and 8 for sten-
cil data

The most commonly used depth format is VK_FORMAT _D32_SFLOAT.
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VexCreateImage

(
physicalDevice,
device,
width,
height,
VK_FORMAT_D32_SFLOAT,
VK_IMAGE_TILING_OPTIMAL,
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9 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
10 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
11 &depthBufferImage,

12 &depthBufferMemory

13 );

14

15 VexCreateImageView(

16 device,

17 depthBufferImage,

18 depthBufferFormat,

19 VK_IMAGE_ASPECT_DEPTH_BIT,

20 &depthBufferView

21 )

Listing 7.4: Create Depth Image

7.2 Depth Image Render Pass Attachment

To use our depth buffer we must add it to our render pass as a depth attachment.

7.2.1 VkAttachmentDescription

Here we describe our depth buffer attachment. The format should be the same
as the depth image itself. We want to clear it before using it for the first
time. We don’t care about storing the depth data, because it will not be used
after drawing has finished. This may allow the driver to perform additional
optimizations. When our render pass instance begins, we don’t care about its
previous contents. Right before finishing our render pass instance, we want its
layout to be optimal for depth stencil operations.

VkAttachmentDescription depthAttachment = {};
depthAttachment.format = VK_FORMAT_D32_SFLOAT;
depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
depthAttachment.stencillLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
depthAttachment.initiallLayout = VK_IMAGE_LAYOUT_UNDEFINED;
depthAttachment.finalLayout =
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
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Listing 7.5: Depth buffer render pass attachment description

7.2.2 Attachment descriptions

Now that we have a new attachment description, we must add it to our render
pass create info attachments array.
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1 VkAttachmentDescription attachments[] =
2 {

3 colorAttachment ,

4

5

depthAttachment,
};

Listing 7.6: New render pass attachments array

7.2.3 Render Pass Subpasses

Inside our render pass we still have a single subpass. But, unlike before, not
only we have a color attachment, but we also have a depth stencil attachment.
Here we are saing that our depth image will be used as the subpass depth
stencil attachment. We are also telling Vulkan to transition our depth buffer
image layout to VK_IMAGE_LAYOUT DEPTH_STENCIL_ATTACHMENT_OPTIMAL during
this subpass. We do this because depth operations will be executed on the depth
image.
1 VkAttachmentReference depthAttachmentReference = {};
depthAttachmentReference.attachment = 1;

3 depthAttachmentReference.layout =
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

[\

4

5 VkSubpassDescription colorSubpass = {};

6 colorSubpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;

7 colorSubpass.colorAttachmentCount = arraysize(
colorAttachmentReferences) ;

8 colorSubpass.pColorAttachments = colorAttachmentReferences;

9 colorSubpass.pDepthStencilAttachment = &depthAttachmentReference;

Listing 7.7: New render pass subpass

7.3 Pipeline Depth Stencil State

We need to enable depth testing in our pipeline state object. This is configured
through a VkPipelineDepthStencilStateCreatelInfo struct.

Here, we are enabling depth testing. We are also telling Vulkan to write
the values that pass the depth test into the depth buffer. We also specify
the comparison operation that decides which fragments to keep and which to
discard. We are sticking to the convention that lower depth means closer to the
camera. Thus, in order for a fragment to pass the depth test, its depth value
should be less than the depth value stored into the respective depth image pixel.
1 VkPipelineDepthStencilStateCreateInfo depthStencilState = {};

2 depthStencilState.sType =
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencilState.depthTestEnable = VK_TRUE;

3
4 depthStencilState.depthWriteEnable = VK_TRUE;
5 depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS;

Listing 7.8: Configure pipeline state depth testing
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7.4 Depth Image Framebuffer Attachment

Before creating a framebuffer, we add our depth image to the framebuffer create
info attachments array.
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VkImageView attachments[] =
{
nextSwapchainImageView,
depthBufferView,
}s

VkFramebufferCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;

createInfo.renderPass = renderPass;
createInfo.attachmentCount = arraysize(attachments);
createInfo.pAttachments = attachments;
createInfo.width = swapchainImageExtent.width;
createInfo.height = swapchainImageExtent.height;
createInfo.layers = 1;

Listing 7.9: Modify framebuffer creation

7.5 Render Pass Clear Values

Because we now have multiple attachments with VK_ATTACHMENT _LOAD_OP_CLEAR,
we also need to specify multiple clear values when we begin our render pass
instance. We clear our color attachment with an opaque black color. We clear
our depth attachment with a depth value of 1.0.
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10
11
12
13

VkClearValue clearValues [2]
clearValues [0].color = { 0.0
clearValues [1].depthStencil

{};
, 0.0f, 0.0f, 1.0f };
{ 1.0f, 0 };

o+

VkRenderPassBeginInfo renderPassBeginInfo = {};
renderPassBeginInfo.sType =
VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;

renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = framebuffer;
renderPassBeginInfo.renderArea.offset = { 0, 0 };

renderPassBeginInfo.renderArea.extent =
context.swapchainImageExtent;

renderPassBeginInfo.clearValueCount = arraysize(clearValues);

renderPassBeginInfo.pClearValues = clearValues;

Listing 7.10: Render pass clear values

Depth values range between 0.0 and 1.0. A depth value of 1.0 means that

the fragment is the furthest away from the camera. A depth value of 0.0 means
that the fragment is the nearest to the camera.
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Chapter 8

Setting Up A Scene

In this chapter we see how to lay out different objects into a virtual world, i.e. a
scene. To do this, we introduce the concept of entity. At the end of the chapter,
we see how to set up and render a simple scene.

Figure 8.1: Define and render a simple scene

8.1 Why Do We Need Entities?

Suppose we want to render two squares like we did here 7.1. We could, for
example, use the following vertex data.
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1 // First quad

2 {{ -0.5¢, -0.5f, +0.0f 1}, },
3 {{ +0.5f, -0.5f, +0.0f 1}, },
4 { { +0.5f, +0.5f, +0.0f }, 1},
5 { { +0.5f, +0.5f, +0.0f }, },
6 { { -0.5f, +0.5f, +0.0f }, 1},
7 { { -0.5f, -0.5f, +0.0f }, 1},
8

9 // Second quad

10 { { -0.5f, -0.5f, -0.5f }, 1},
11 { { +0.5f, -0.5f, -0.5f }, 1},
12 { { +0.5f, +0.5f, -0.5f }, 1},
13 { { +0.5f, +0.5f, -0.5f }, 1},
14 { { -0.5f, +0.5f, -0.5f }, 1},
15 { { -0.5f, -0.5f, -0.5f }, 1},

Listing 8.1: Vertices for drawing two squares

This is what we have done in all previous chapters. Although this works,
it’s obviously not a flexible solution. Those of you with a keen eye have surely
noticed that our squares almost have the same vertices. The only difference
being in the z coordinates. Drawing two squares means drawing two instances
of the same geometric data. Why would we need to repeat the same data twice,
just with some slight variations? There is no reason to do it. We can use
matrices to define the transformations we want to apply to each object. For one
square we could use a matrix that doesn’t apply any transformation. For the
other square we could use a matrix that translates the vertices downwards.

There is a catch. Now, our objects are not only defined by their vertex data.
They also have a position, a rotation, etc. We also observe that, if possible, our
objects can share the same vertex data. We should do this to avoid redundancy
and to make our program more efficient. We introduce the concept of entity to
deal with this situation.

8.2 Entity

An entity is simply a collection of all the data that is necessary to place an
object in a scene and to draw it accordingly.

8.2.1 Entity Positional Data

We now have an idea of the nature of entities. We can start by defining all
the data necessary to place an entity into a scene. Let’s start with an example.
We can have a cube placed at (0,0,0), the origin of our scene. We could place
another cube at (5,3, 0) and rotate it by 30 degrees around the x axis and by 60
degrees around the z axis. We could also place another cube around the scene
and scale it by a factor of 10 to make it bigger.

From this example, we can see that our entities have three main properties
that define how the entity is contextualized inside a scene:

e a 3d vector that represents its position inside the scene
e a 3d vector that represents its rotations around the z,y and z axis

e a scalar that represents its scale
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Entity

position: vec3
rotation: vec3

scale: f32

Figure 8.2: Entity positional data

8.2.2 Entity Rendering Data

In our previous example, we have talked about placing cubes around a scene.
Earlier we have discussed that entities should share their vertex data if possible.
If two or more entities are cubes, they should share the same vertex data. In
our case, sharing vertex data means using the same vertex buffer. We know
that a vertex buffer is used in tandem with a pipeline state object for drawing
operations. Because of this, sharing a vertex buffer also means sharing a pipeline
state object. Together with the pipeline state object we should also store the
pipeline’s layout.

To transform our vertices from local space to world space, we use a model
matrix. We also have to use both a view and a projection matrix to transform
our vertices from world space to clip space. We have seen how these three
matrices are passed to the vertex shader as uniforms. Hence, our entity also
needs to use a uniform buffer. Contrary to the other rendering resources, we
must create a uniform for every entity. This is because the entity’s uniform data
refers to the entity itself and is not shared with other entities. Together with
the uniform buffer we should store a pipeline descriptor set that contains our
uniform buffer resource.

Entity

vertexBuffer: VertexBuffer*
pipeline: Pipeline*

uniformBuffer: UniformBuffer

Figure 8.3: Entity rendering data

8.2.3 Other Entity Data

We have discussed all the data that it’s always necessary for our entities. Obvi-
ously, we can later add more data to entities depending on our needs. We will
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see multiple instances of this in the future.

8.2.4 Updating Entities

Some of our entities are not static. This means that their properties change over
time. They could rotate, or move along one axis, for example. The important
thing to note here is that, if we want to use our updated values in our rendering
operations, we must remember to upload the relevant data into the entity’s
uniform buffer.

1 Entity cube = ...;

2

3 // Update cube properties

4 cube.position = newPosition;

5 <cube.rotation = newRotation;

6 cube.scale = newScale;

7

8 // Update uniform buffer data

9 cube.ubo.model = ComputeModelMatrix (&cube) ;
10 cube.ubo.view = ComputeViewMatrix (&camera);
11 cube.ubo.projection = ComputeProjectionMatrix (&camera);
12

13 // Update uniform buffer

14 // Use vkMapMemory, memcpy and vkUnmapMemory

Listing 8.2: Update entity data and uniform buffer

8.2.5 Rendering Entities

Here we can see how to use the rendering data stored in our entities to actually
draw them on the screen.

1 Entity cube = ...;

2

3 // Bind cube pipeline object

4 // Bind cube vertex data
5

6

// Bind uniform buffer descriptor set
// Draw

Listing 8.3: Render entity

8.3 Camera

We have seen that our entities’s view and a projection matrices are computed
from a camera. This is a bundle of all the necessary data that is used to represent
a virtual camera inside our scene. We need a camera in order to define the point
of view from which we observe the scene. We could consider our camera as the
eyes through which we can glimpse at our virtual world.

8.3.1 Camera Data

In our case, we use a perspective camera. This adds perspective to the scene,
making the rendered image more realistic. In order to compute a view matrix,
our camera must have:

e a position, like our entities
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e a target, i.e. a 3d vector identifying a point that the camera is looking at
e an up vector, i.e. a 3d vector that defines the camera’s up direction

In order to compute a projection matrix, we must define our camera’s frustum.
We do this using the following values:

e a scalar value representing the camera’s field of view
e a scalar value representing the camera’s aspect ratio
e a scalar value representing a near plane
e a scalar value representing a far plane
All the entities that fall within the frustum will be rendered. All the other

entities will be clipped, i.e. discarded and won’t be renderer.
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Figure 8.4: Perspective camera frustum

Camera

position: vec3
target: vec3

up: vec3

fov: f32
aspect: f32

nearPlane: f32

farPlane: f32

Figure 8.5: Perspective camera data
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8.4 Setting Up A Simple Scene

In this section we set up a simple scene. We do this to see in action the concepts
we discussed so far.

8.4.1 Scene Entities

Our scene is made up by three entities. A floor, a cube at the center of the floor,
and another cube floating in the air. The floating cube is supposed to represent
a light, but here obviously we haven’t implemented lighting yet. Don’t worry
about it for now, we will see how to improve our scene adding lighting to it
later.

1 Entity floor = {};
2 floor.position = glm::vec3(0.0f, 0.0f, 0.0f);
3 floor.rotation = glm::vec3(0.0f, 0.0f, 0.0f);
4 floor.scale = 10.0f;
5 floor.color = glm::vec3(0.0f, 0.0f, 1.0f);
6 floor.vertexBuffer = &quadVertexBuffer;
7 floor.pipeline = &defaultPipeline;
8 floor.uniformBuffer = CreateUniformBuffer (floor.pipeline.
descriptorSetLayout);
Listing 8.4: FloorEntity
1 VexEntity cube = {};
2 cube.position = glm::vec3(0.0f, 0.0f, 0.5f);
3 cube.rotation = glm::vec3(0.0f, 0.0f, VEX_PI / 4.0f);
4 cube.scale = 1.0f;
5 cube.color = glm::vec3(0.0f, 1.0f, 0.0f);
6 cube.vertexBuffer = &cubeVertexBuffer;
7 cube.pipeline = &defaultPipeline;
8 cube.uniformBuffer = CreateUniformBuffer (cube.pipeline.
descriptorSetLayout) ;
Listing 8.5: Cube entity
1 VexEntity light = {};
2 1light.position = glm::vec3(2.0f, 1.0f, 3.0f);
3 1light.rotation = glm::vec3(0.0f, 0.0f, 0.0f);
4 1light.scale = 0.25f;
5 1light.color = glm::vec3(1.0f, 1.0f, 0.0f);
6 1light.vertexBuffer = &cubeVertexBuffer;
7 1light.pipeline = &defaultPipeline;
8 1light.uniformBuffer = CreateUniformBuffer (light.pipeline.

descriptorSetLayout)
Listing 8.6: Light entity

8.4.2 Rendering Data

As you can see, the cube and the light entity share the same vertex data. Obvi-
ously, our floor takes its vertex data from a different vertex buffer. You can also
observe that all three entities use the same pipeline state object. This is because
we use the same pipeline configuration to render all of them. This pipeline state
object is a slight variation of the one we have seen in previous chapters.
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Figure 8.6: Our scene seen from a modeling software

#version 450

layout (location = 0) in vec3 inPosition;

layout (location 0) out vec3 outColor;

layout (set = 0, binding = 0) uniform UBO

{
mat4 model;
mat4d view;
mat4 projection;
vec3 color;
} ubo;

void main ()

{
gl_Position = ubo.projection * ubo.view * ubo.model * vec4(
inPosition, 1.0);
outColor = ubo.color;

}

Listing 8.7: Default pipeline vertex shader
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#version 450

layout (location = 0) in vec3 inColor;
layout (location = 0) out vec4 outColor;
void main ()

{

outColor = vec4(inColor, 1.0);

O © 00O Uk W
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}
Listing 8.8: Default pipeline fragment shader

Our vertex data has only one attribute, a 3d position. Inside our vertex
shader we take as uniforms the model, view and projection matrices. Nothing
strange here. Note that we also pass a color value as a uniform. This represents
the entity’s color. We transform our vertex data using our matrices. We also
pass to the fragment shader the entity’s color. This will be the color used by
the produced fragments.

8.4.3 Camera

We have defined our entities. Now we define our camera. Our camera is located
at (0,8,8). It’s looking at our cube: the center of the scene. We use the positive
z axis as up vector. We use a field of view of 45 degrees because it’s a common
value for 3d games. We also use the window’s aspect ratio.

1 Camera camera = {};

2 camera.position = glm::vec3(0.0f, 8.0f, 8.0f);

3 camera.target = cube.position;

4 camera.up = glm::vec3(0.0f, 0.0f, 1.0f);

5 camera.fov = glm::radians(45.0f);

6 camera.aspect = (£32) (WINDOW_WIDTH) / (£32) (WINDOW_HEIGHT) ;
7 camera.nearPlane = 0.01f;

8 camera.farPlane = 100.0f;

Listing 8.9: Scene camera setup

8.5 Our Application So Far

We have set up our simple scene. During our application’s startup phase, we
initialize all the scene data. In our case we set up the floor, cube and light
entities. We then set up the camera. Then, during the application’s main loop,
we update all entities and render them. Here, all the entities are static, hence
we don’t need to actually update them. We can render the entities in any order
we want because we are using a depth buffer.
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int main(void)

{

// Setup
// Setup
// Setup
// Setup

floor entity
cube entity

light entity
camera

while (isApplicationRunning)

{

// Update entities
// Render entities

Listing 8.10: Scene application
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Chapter 9
Blinn-Phong Lighting

In this chapter we add lighting to the scene we previously set up. We first
implement the Blinn-Phong lighting model. After that, we refine its behavior
adding materials to our objects and lights.

9.1 Vulkan Related Details

Before starting to implement the lighting model, we must clarify some technical
aspects relating to Vulkan.

9.1.1 Pipeline State Objects

The scene’s entities can be divided into two groups: the entities to which we
apply lighting, i.e. the floor and the cube; and the entities to which we don’t
apply lighting, i.e. the light source itself. This means that we must use two sets
of shaders: one that implements the Blinn-Phong lighting model, and the other
that simply draws a flat color. For this reason, we need to create two different
pipeline state objects.

9.1.2 Updating Our Vertex Data

For each fragment, the lighting model needs to know the surface normal. To
solve this problem, we store, for each vertex, a normal vector. Here we can see
a visualization of the quad and cube vertex normals.
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Figure 9.1: Quad vertex normals visualization

Figure 9.2: Cube vertex normals visualization

9.2 Blinn-Phong Lighting Model

In computer graphics, we approximate lighting using simplified models. The
lighting model we implement here is called Blinn-Phong. This model divides
light into three components: ambient light, diffuse light and specular light.
9.2.1 Ambient Lighting

In the real world, even when there is no apparent light source, objects aren’t
completely dark. This is because light can come from different sources around
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us, even if they are not directly visible. Indeed, light scatters and bounces in
different directions. Thus, some light sources can indirectly light our objects.
To simulate this light property, we use a small constant light value that we add
to our objects’ lighting.

// Compute diffuse component

float ambientStrength = 0.1;
vec3 ambient = ambientStrength * inLightColor;

vec3 result = ambient * inObjectColor;
outFragmentColor = vec4(result, 1.0);
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Listing 9.1: Computing ambient component

1 Vulkan Example x

Figure 9.3: Scene with ambient lighting

9.2.2 Diffuse Lighting

Diffuse lighting simulates the impact a light has on an opaque object. In simple
terms, the more a part of the object faces the light, the brighter it becomes. The
diffuse impact is the strongest when the angle between the surface’s normal and
the light ray is zero. The diffuse impact will be zero when the angle is greater
than or equal to ninety degrees.
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Figure 9.4: Diffuse lighting

1 // Compute diffuse component

2 vec3 normal = normalize(inNormal);

3 vec3 lightDirection =

4 normalize (inLightPosition - inFragmentPosition);
5 float diffuseImpact = max(

6 dot (normal, lightDirection),

7 0.0

8 J;

9 vec3 diffuse = diffuseImpact * inLightColor;
10

11 vec3 result = diffuse * inObjectColor;

12 outFragmentColor = vec4(result, 1.0);

Listing 9.2: Computing diffuse component

51 Vulkan Example

Figure 9.5: Scene with diffuse lighting
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9.2.3 Specular Lighting

Specular lighting simulates the bright spot that lights cause on shiny objects.
This spot is called specular highlight. The specular impact is the strongest when
our view direction is perfectly aligned with the light ray that is reflected off the
object’s surface. The more our view deviates form the reflected vector, the less
the specular impact will be.

To compute the specular impact we first compute a unit vector exactly
halfway between the view direction and the light direction. The closer this
halfway vector aligns with the surface’s normal, the higher the specular impact.

<l
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Figure 9.6: Specular lighting

1 float specularStrength = 0.5;

2 float shininess = 64;

3 vec3 cameraDirection =

4 normalize (inCameraPosition - inFragmentPosition);
5 vec3 halfwayDirection =

6 normalize(lightDirection + cameraDirection);
7 float specularImpact = pow(

8 max (dot (normal, halfwayDirection), 0.0),

9 shininess

10 );

11 vec3 specular = specularImpact * inLightColor;
12

13 vec3 result = specular * inObjectColor;

14 outFragmentColor = vec4(result, 1.0);

Listing 9.3: Computing specular component
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Figure 9.7: Scene with specular lighting

9.2.4 Putting It All Together

Finally we can merge ambient, diffuse and specular components together. We
do this by simply adding them together.

1 vec3 result = (ambient + diffuse + specular) * inObjectColor;
2 outFragmentColor = vec4(result , 1.0);

Listing 9.4: Computing final light value

1 Vulkan Example

Figure 9.8: Scene with ambient, diffuse and specular lighting

9.3 DMaterials

Real world objects have different reactions to light. We simulate this property
using materials. We can describe a material by specifying four different proper-

91



ties: one for each lighting component plus a shininess value. We can simulate a
lot of different real world materials simply using different combinations of these
four values.

9.3.1 Scene Materials

In our scene, we use two materials. The turquoise material is used by the floor
entity. The emerald material is used by the cube entity.

1 Material turquoise = {};

2 turquoise.ambient ={ 0.1f, 0.18725f, 0.1745f };
3 turquoise.diffuse = { 0.396f, 0.74151f, 0.69102f };
4 turquoise.specular = { 0.297254f, 0.30829f, 0.306678f I};
5 turquoise.shininess = 128.0f * 0.1f;

6

7 Material emerald = {};

8 emerald.ambient = { 0.0215f, 0.1745f, 0.0215f };

9 emerald.diffuse = { 0.0215f, 0.1745f, 0.0215f };

0 emerald.specular = { 0.633f, 0.727811f, 0.633f };

1 emerald.shininess = 128.0f * 0.6f;

—= =

Listing 9.5: Materials used in our scene

9.3.2 Blinn-Phong With Object Materials

The ambient material property defines what color the surface reflects under
ambient lighting. This is usually the same as the surface’s color. The diffuse
material property defines the color of the surface under diffuse lighting. The
specular material property defines the color of the specular highlight. The
shininess material property affects the specular highlight’s radius.

[#7 vutken Exampte %

Figure 9.9: Scene lighting using material properties
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1 // Compute ambient lighting

2 vec3 ambient = inLightColor * inObjectMaterialAmbient;

3

4 // Compute diffuse lighting

5 vec3 normal = normalize (inNormal);

6 vec3 lightDirection =

7 normalize (inLightPosition - inFragmentPosition);

8 float diffuseImpact = max(dot(normal, lightDirection), 0.0);
9 vec3 diffuse =

10 inLightColor * (diffuseImpact * inObjectMaterialDiffuse);
11

12 // Compute specular lighting

13 bool blinn = true;

14 float blinnShininessScale = 3;

15 vec3 cameraDirection =

16 normalize (inCameraPosition - inFragmentPosition);

17 vec3 halfwayDirection =

18 normalize (lightDirection + cameraDirection);

19 float specularImpact = pow(

20 max (dot (normal, halfwayDirection), 0.0),

21 inObjectMaterialShininess.x * blinnShininessScale

22 ),

23 vec3 specular =

24 inLightColor * (specularImpact * inObjectMaterialSpecular);
25

26 // Combine ambient, diffuse and specular lighting

27 vec3 result = ambient + diffuse + specular;

28 outFragmentColor = vec4(result, 1.0);

Listing 9.6: Blinn-Phong lighting using object materials

9.3.3 Blinn-Phong With Object And Light Materials

In the previous image, we see that the objects are too bright. This is due to the
fact that the ambient, diffuse and specular colors are computed simply using
the light’s color. Lights also have different intensities for their ambient, diffuse
and specular components.

We set the ambient component to a low intensity because we don’t want the
ambient color to be too dominant. We set the diffuse component to a slightly
darkened version of the light’s color. We set the specular component to the
light’s color, shining at full intensity.

1 1light.color = glm::vec3(1.0f, 1.0f, 1.0f);
2 1light.material.ambient = light.color * 0.2f;
3 1light.material.diffuse = light.color * 0.5f;
4 light.material.specular = light.color * 1.0f;

Listing 9.7: Our scene light’s material
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24
25
26
27

// Compute ambient lighting

vec3 ambient = inLightMaterialAmbient * inObjectMaterialAmbient;

// Compute diffuse lighting

vec3 normal = normalize(inNormal);
vec3 lightDirection =
normalize (inLightPosition - inFragmentPosition);

float diffuseImpact = max(dot(normal, lightDirection),
vec3 diffuse =
inLightMaterialDiffuse * (diffuseImpact x*
inObjectMaterialDiffuse);

// Compute specular lighting

float blinnShininessScale = 3;
vec3 cameraDirection =
normalize (inCameraPosition - inFragmentPosition);

vec3 halfwayDirection =
normalize (lightDirection + cameraDirection);
float specularImpact = pow(
max (dot (normal, halfwayDirection), 0.0),
inObjectMaterialShininess.x * blinnShininessScale
)
vec3 specular =
inLightMaterialSpecular * (specularImpact x*
inObjectMaterialSpecular);

// Combine ambient, diffuse and specular lighting
vec3 result = ambient + diffuse + specular;
outFragmentColor = vec4(result, 1.0);

Listing 9.8: Blinn-Phong lighting using object and light materials

5 Vulkan Example

0.0);

Figure 9.10: Scene lighting using object and light materials
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Chapter 10

Multisample Anti Aliasing

If we examine up close the images we have rendered up to this point, we can
notice that some of our edges have a jagged saw like pattern. This effect is
called aliasing and it’s the result of having to render our images on a grid with
a finite number of pixels. We can’t completely avoid this effect since screens
will always have a finite resolution. We can, however, attenuate the issue using
a technique known as multisample anti aliasing, MSAA for short.

Figure 10.1: An example of aliasing

10.1 MSAA

So far, we have always used only one sample per pixel. This means that we
determine its color using a single sample point, placed at its center. If the
rendered geometry doesn’t cover the sample point, the entire pixel is left blank.
Else, if the rendered geometry covers the sample point, we color the entirety of
the pixel. This is what causes aliasing.
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Figure 10.2: Rendering using one sample per pixel

Figure 10.3: Rendering using four samples per pixel

MSAA uses multiple sample points per pixel to determine its final color.
More samples lead to better results but also mean more overhead. For each
pixel, the less the samples are covered by the geometry, the less the geometry
color contributes to the pixel final color. Thanks to this, edges are surrounded
by colors slightly lighter than the edge’s color itself. This causes the edge to
appear smooth when viewed from a distance.
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10.2 Adding MSAA In Vulkan

In this section we discuss all the steps that are necessary to add MSAA to our
Vulkan application.

10.2.1 Get Available Sample Count

We must determine how many samples our hardware can use. To do this we
query the maximum number of samples for both color and depth values. After
that, we pick the highest sample count that they both support.

1 VkSampleCountFlagBits GetMSAASamples (VkPhysicalDevice
physicalDevice)

2 {

3 VkPhysicalDeviceProperties props = {};

4 vkGetPhysicalDeviceProperties (physicalDevice, &props);

5

6 VkSampleCountFlags flags =

7 props.limits.framebufferColorSampleCounts &

8 props.limits.framebufferDepthSampleCounts;

9

10 if (flags & VK_SAMPLE_COUNT_64_BIT)

11 return VK_SAMPLE_COUNT_64_BIT;

12 if (flags & VK_SAMPLE_COUNT_32_BIT)

13 return VK_SAMPLE_COUNT_32_BIT;

14 if (flags & VK_SAMPLE_COUNT_16_BIT)

15 return VK_SAMPLE_COUNT_16_BIT;

16 if (flags & VK_SAMPLE_COUNT_8_BIT)

17 return VK_SAMPLE_COUNT_8_BIT;

18 if (flags & VK_SAMPLE_COUNT_4_BIT)

19 return VK_SAMPLE_COUNT_4_BIT;

20 if (flags & VK_SAMPLE_COUNT_2_BIT)

21 return VK_SAMPLE_COUNT_2_BIT;

22

23 return VK_SAMPLE_COUNT_1_BIT;

24}

Listing 10.1: Determine the maximum supported sample count

10.2.2 Create New Render Target

Up to this point, we have always used the next swapchain image as our render
target. The problem is that our swapchain images store only one sample per
pixel. They can’t store more than one sample per pixel. If they did, that would
make them not presentable. Thus, we have to create a new multisampled image
that will be used as our application’s render target.

Creating The Multisample Render Target

To create our new render target, we reuse the image creation functions we saw
in earlier chapters. The only thing different from before, is that we now pass
the number of samples that our image will store per pixel.
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1 VexCreatelImage

2 (

3 physicalDevice,

4 device,

5 swapchainImageExtent .width,

6 swapchainImageExtent.height,

7 msaaSamples,

8 swapchainImageFormat.format,

9 VK_IMAGE_TILING_OPTIMAL,

10 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
11 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
12 4&renderTargetImage , &renderTargetMemory
13 );

14

15 VexCreateImageView

16 (

17 device,

18 renderTargetImage,

19 swapchainImageFormat.format,

20 VK_IMAGE_ASPECT_COLOR_BIT,

21 &renderTargetView

22 ),

Listing 10.2: Create the multisample render target

Update Depth Buffer Creation

We must also remember to update the depth buffer creation. This is because
the depth buffer will also store more samples per pixel.

10.2.3 Update Render Pass

We set the color attachment and the depth attachment samples count
to msaaSamples. We also change the color attachment’s final layout
to VK_IMAGE_LAYOUT_COLOR_ATTACHMENT OPTIMAL. We do this because
multisampled images can’t be directly presented.

Add A Resolve Color Attachment

Right now, we only have a multisampled render target and a multisampled
depth buffer. Neither is suitable to be presented to the screen. Because of this,
we add a new color attachment to the render pass. After finishing our rendering
operations, we will resolve our render target to this new color attachment. This
resolve color attachment is the one that will be presented to the screen.
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VkAttachmentDescription colorResolveAttachment = {};
colorResolveAttachment.format = swapchainImageFormat.format;
colorResolveAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
colorResolveAttachment.load0p = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
colorResolveAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
colorResolveAttachment.stencillLoadOp =
VK_ATTACHMENT_LOAD_OP_DONT_CARE;
7 <colorResolveAttachment.stencilStoreQOp =
VK_ATTACHMENT_STORE_OP_DONT_CARE;
8 <colorResolveAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
9 colorResolveAttachment.finalLayout =
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

S UL W N~

Listing 10.3: Color resolve attachment

Render Pass Attchments

Now our render pass has three attachments.

1 VkAttachmentDescription attachments[] =
2 {

3 colorAttachment ,

4 depthAttachment,

5 colorResolveAttachment ,

6

};
Listing 10.4: MSAA render pass attachments

Update Color Subpass Description

We must tell to our color subpass to actually use the color resolve attachment.
To do this we update its description.

1 VkAttachmentReference colorAttachmentResolveReference = {};

2 colorAttachmentResolveReference.attachment = 2;

3 <colorAttachmentResolveReference.layout =
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

4

5 //

6

7 colorSubpass.pResolveAttachments =

8 &colorAttachmentResolveReference;

Listing 10.5: Color resolve attachment reference

10.2.4 Update Multisampling Pipeline State

Not only we need to create resources that are compatible with MSAA. We also
need to directly enable it while creating the pipeline state object.

1 VkPipelineMultisampleStateCreateInfo multisamplingState = {};

2 multisamplingState.sType =

VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
3 multisamplingState.rasterizationSamples = msaaSamples;

Listing 10.6: Enable multisampling
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10.2.5 Update Framebuffer

Now that we have updated our render pass attachments, we also must update
the attachments that are used by our framebuffers. We use the multisample
render target as the first attachment. We use the depth buffer as the second
attachment. And we use the next swapchain image as the color resolve attach-
ment.

10.3 Side By Side Comparison

Here we can see a side by side comparison of how MSAA influences the rendered
image’s quality. On the left we see the cube rendered without using MSAA. On
the right we see the cube rendered using MSAA. As explained earlier, the jagged
pattern gets blurred making it look smoother. This leads to more pleasant
visuals.

Before After

Figure 10.4: Before and after MSAA
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Conclusion

The goal of this work was to explore the Vulkan graphics API, studying its
ideas and seeing how to put them into practice. During this work, we have
dealt with many concepts that, not only, are core to Vulkan, but also to other
modern graphics APIs; such as Direct3D and Metal. Having a good grasp on
these concepts allows us to be more at ease transitioning to these other APIs.
Having a good understanding of Vulkan, we can also implement many real time
rendering ideas: we have seen an example using Blinn-Phong lighting.

We have met a lot of Vulkan concepts so far, but there are many more that
we haven’t faced, being more advanced and specific. We haven’t discussed on
how to use multiple render pass subpasses and how to describe the dependencies
between them. We haven’t talked about how we could render multiple frames
concurrently, using a pool of command buffers. We haven’t faced the problem
of GPU memory allocation and how to implement an appropriate memory al-
locator. We haven’t seen how to deal with textures, generating mipmaps and
mapping them to 3D objects. These are some ideas that I would like to suggest
to people that want to keep delving deeper into Vulkan.
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Appendix A

Vulkan Concepts

A.1 Queues, Queue Families And Command
Buffers

A.1.1 Command Buffer

In older graphics APIs, like OpenGL, we simply need to call a function from
our code to execute some operations on the GPU. This function call causes our
application to send a request to the GPU driver. The GPU driver will then
execute the operations we want. The problem is that it’s inefficient to send
each request separately. Vulkan requires us to batch our requests together into
a buffer. This batch is called a command buffer.

A.1.2 Queues and Queue Families

A command buffer is executed by a GPU queue. A command buffer can contain
different kinds of operations, such as graphics commands, compute commands,
transfer commands and so on. Specific types of commands can only be executed
by specific types of queues. These queue types are called queue families.

There is no connection between a command buffer and a queue or queue
family. There is, although, a connection between the command pool form which
a command buffer is allocated and a queue family. Each command buffer that
takes memory from a given pool can only be submitted to a queue from the
queue family used to create the command pool itself.

A.1.3 Command Buffer Execution

If we want our GPU to execute any kind of commands we need to record a
command buffer and submit it to a proper queue. When a command buffer
is submitted to a queue, all the recorded commands start being processed by
the GPU. The Vulkan specification guarantees that each command will start
execution in order, but complete their execution out of order. This is caused by
the fact that commands are executed concurrently. This means that unless we
add synchronization ourselves, all commands in a queue execute out of order.
Commands may even get reordered between different command buffers and even
across different command buffer submissions. The GPU only sees a linear stream

102



of commands. It’s a common pitfall to assume that splitting command buffers
or submits adds some sort of automatic synchronization between them.

A.2 Image Layouts And Layout Transitions

Images are used for different purposes. They can be used as render targets, as
textures or even for data transfers. When we create an image we also specify
its usage flags. These flags indicate the different types of operations we want
to perform on the image. Image usage is not the only thing we need to specify.
Each type of operation is linked to a specific image layout. We could also use
a general layout that supports all operations, but this would be inefficient. We
usually change the image’s layout before we perform a given type of operation
on it. We explicitly transition an image’s layout using an image memory barrier.
We implicitly transition an image’s layout using a render pass’ subpass.

A.3 Swapchain

A swapchain is nothing but a set of images that can be presented to the screen.
Presenting an image means displaying it. In practice, we present an image
by giving it back to the OS’s presentation engine. We use a present mode to
configure how images are internally processed by the presentation engine, and
how they are displayed on the screen.

A.3.1 Immediate

This is the simplest present mode. Using this present mode, the presentation
engine reserves only one swapchain image at a time. This image is the one that
is currently displayed on the screen. When we execute a present request, the
presentation engine releases the currently displayed image and acquires the one
we want to present. The problem with this present mode is that the presentation
engine doesn’t wait for our monitor to finish reading the image. This can cause
a graphical artifact known as tearing.

A.3.2 FIFO

Using this present mode, the presentation engine reserves at least two swapchain
images at a time. One image that is being presented and one or more images that
we can use for rendering. When we execute a present request, the presentation
engine acquires the image we want to present and puts it into a queue. When the
monitor finishes displaying the current image, the presentation engine removes
it from the head of the queue, releasing it, and then starts presenting the next
image in the queue. Doing this we avoid tearing, but another problem arises.
When the queue is full, our application doesn’t have other images that can be
used for rendering, hence it has to wait for the presentation engine to release
the currently presented image.
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A.3.3 Mailbox

Using this present mode, the presentation engine reserves at least three
swapchain images. One image that is being presented, one image that waits for
the current image to be presented and one or more images that can be used for
rendering. When we issue a present request, the presentation engine replaces
the image that is waiting to be presented, releasing it, with the one we want to
present. This technique solves tearing, and also doesn’t require our application
to block execution, since there is always at least an image we can use.

A.4 Render Pass And Framebuffer
A.4.1 Render Pass

A render pass describes a set of images, also called attachments, required for
drawing operations. A render pass also describes a series of subpasses that
drawing operations are ordered into.

A subpass collects drawing operations that use the same attachments. Each
of these drawing operations may use some attachments as inputs, reading data
from them, and other attachments as outputs, writing data to them.

A.4.2 Framebuffer

A framebuffer is the set of images a render pass instance operates on. Hence, a
framebuffer collects the actual attachments used by a render pass.

A.5 Pipeline State Object

The graphics pipeline is composed by a series of stages. Each performing a given
operation. Some stages are programmable by us, while other stages can only
be partially configured. OpenGL allows us to change the stages’ configuration
whenever we want. In Vulkan we can’t do this. We must bundle our pipeline
configuration into one monolithic object that represent the pipeline’s state in
its entirety. This comes from performance considerations. Changing the config-
uration of just one single stage may require a lot of operations executed by the
driver in the background at runtime. This may cause noticeable slowdowns in
our application. In Vulkan we avoid this by creating, ahead of time, multiple
pipeline state objects, each representing a given set of stages’ configurations.

A.6 Descriptors And Descriptor Sets

Resources used inside shaders are called descriptors. Vulkan doesn’t allow us
to directly provide descriptors to shaders. We must aggregate descriptors in an
object called descriptor set. We can place whatever resources we want inside
a descriptor set, but we have to respect its specific structure. The structure of
a descriptor set describes what types of resources can be contained inside the
set, the number of each of these resources and their order. This description is
provided by a descriptor set layout. In summary, a descriptor set is an object
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in which we store resources’ handles, a descriptor set layout defines how to
interpret the data stored inside a descriptor set.

Descriptor Set Descramton et

Layout
| S
0x5678 « Sampled Image [2]
OxA43F
0x4B41 < Sampler
Ox21EF « Uniform Buffer
0x89D9« Storage Buffer

Ny

Figure A.1: Descriptor set and descriptor set layout
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