Virtual Point Lights

Emanuele Franchi and Lorenzo Ferrante

Introduction 2
Keller’s Instant Radiosity 2
Our Version of Keller’s Instant Radiosity 3
Implementation 5
Particle Simulation 5
Intersection Tests o)
Ray-Quad 5

Ray-Box 6

Rendering 7
Rendering the Cube Shadow Map 8
Rendering the Point Light with Shadows 9
Rendering the Virtual Lights without Shadows 13
Performance 16
Asymptotic Time Complexity for the Particle Simulation 16
Improving the Particle Simulation 17
Asymptotic Time Complexity for the Rendering 17
Improving the Rendering 17
Considerations and Future Work 18
Bibliography 18

Appendix A: Libraries

—
O

Appendix B: Test Machine Specs 19

Introduction

The aim of this work is to implement the global illumination technique presented by Alexander
Keller in his 1997 paper titled Instant Radiosity.

The reason we choose to implement this technique stems from its inherent simplicity. Keller tries
to approximate the diffuse global illumination of the scene by shooting off random rays from the
light source, spawning virtual light sources where they land, and lighting the scene using these
virtual lights, together with the main one. Hence, this technique reduces the problem of
computing global illumination to directly lighting the scene using multiple lights, thing that we
well know how to do.

When Keller proposed this technique, graphics hardware was still in its infancy. Even using the
latest hardware at the time, the achieved rendering rate was in the orders of seconds. This,
obviously is far from the requirement we have for real time applications, which is in the orders of
milliseconds. Hence, another point of interest for us has been revisiting this technique, with
modern graphics hardware and rendering APIs (DirectX 11).

In our work, for simplicity’s sake, we have not implemented the full fledged technique proposed

by Keller, but a simplified version. During our discussion of the technique, we will mention
whenever we deviate from it.

Keller’'s Instant Radiosity

In this section we illustrate the instant radiosity technique proposed by Keller.

[——] [—— T e
L
- L
" - L L
= s
. LY L1) b
(a) Scene (b) Shooting rays into the scene (c) Using hit points as VPLs

We suppose, without lack of generality, that there is a single light source in the scene. Extending
the technique to multiple light sources is trivial. The light source itself is modeled by a light
emitting surface.

Let:

e N be the number of particles to start off the light source.
e Let p be the scene’s mean reflectivity. Note that p € (0,1).

We start by randomly spawning N particles on the light’s surface.
pO’ p']; p2s ey pN—1

Each particle spawns a virtual light in its position. This is step zero of the particle simulation.
Then, the first LpN | particles are shot in the scene following random directions. Where they land
we spawn a virtual light. This is step one of the particle simulation. Next, the first Lp?N. particles
bounce off the geometry they hit, continuing their travel. Where they land, we spawn a virtual
light. This is step two of the particle simulation. We continue until we reach the first step j such
that Lp'NJ is zero.

Each particle stores the amount of light that it carries. When a particle is spawned, the amount
of light it carries is derived from the light source. Each time a particle bounces off a surface with
diffuse reflectivity py, the amount of light it carries is attenuated by py / #. When a particle
bounces off a surface, we also spawn a virtual light. The amount of light emitted by this virtual
light is the attenuated light carried by the particle.

At the end of the simulation, we will have spawned M virtual light sources
Io, |1, |2, aay IM—1
each one emitting light
LO’ L11 L27 ey LM—']

For each virtual light I, we render the whole scene with shadows using |, as the only point light
source, storing the resulting image in the buffer b;.

When rendering the scene using virtual light |, as the only point light source, the amount of
emitted light L; is multiplied by N/L«-l. The term « = p)N is used to compensate for the light
attenuation applied during the simulation. Here, j is the simulation step in which light |, was
spawned.

At the end, we sum together all the buffers

bOa b1l b21 sy bM—']
into the final frame. When being summed, all the buffers are weighted by 1/N.

Our Version of Keller’s Instant Radiosity

In this section we discuss our simplified version of Keller’s technique.

Particle simulation on the example scene with N=10 and p=0.5.

Like Keller, we suppose that there is a single light source in the scene. Unlike Keller, this light
source is a point light, instead of a light emitting surface.

We start by spawning N particles, at the point light position.
p01 p1’ p21 ey pN—1

The particle simulation we run is slightly different from Keller’s. First and foremost, we don’t
spawn virtual lights where we have spawned our particles. Then, instead of shooting off the first
LpN | particles into the scene, we shoot all N particles. In the next simulation step, the first Lp?N
particles continue their travel into the scene, and so on.

Exactly as Keller’s, our particles store the amount of light they carry. At the start, their amount of
light is the same as the amount of light emitted by our point light. Each time a particle bounces
off a surface, we attenuate its light in the same way as Keller.

Exactly as Keller’s, every time a particle bounces off a surface, we spawn a virtual light. Its
emitted light is the amount of light carried by the particle, once attenuated.

We render the whole scene:
e Using the point light as the only light source, with shadows.
e For each virtual light, using the virtual light as the only light source, without shadows,
unlike Keller.

When rendering the scene using the various virtual lights, we still multiply each virtual light's
intensity by N/Le.

Lastly, exactly as Keller, we sum together all the rendered buffers, each one having weight 1/N.

Implementation

In this section we delve into more technical details of our implementation of instant radiosity.

Particle Simulation

The particle simulation is implemented through a series of ray casts.

At the start, we randomly generate N rays, starting from the point light’s position, along random
directions. These random directions are chosen by randomly picking a point on the unit sphere,
using a uniform distribution.

A particle being shot into the scene is implemented through a ray cast. Given a ray, we iterate
over each object in the scene, doing a ray-object intersection test. This intersection test returns
the closest point of intersection. We also keep track of the closest point of intersection along the
ray, among all objects in the scene. In this way, at the end of the loop, we will have the closest
intersection point between the ray and the scene.

The particles also need to bounce off the geometry they hit. To implement this behaviour, when
a particle should bounce, we perform another ray cast, starting from the previously found point
of intersection. The direction of this new ray cast is given by the reflection of the direction of the
previous ray cast, over the object’'s normal at the intersection point. This means that, when
computing the ray-object intersection, we also need to compute the object's normal at the
intersection point.

Intersection Tests

In our scene we have only quads and boxes. Thus, we have implemented two types of
ray-object intersection test: ray-quad and ray-box.

Ray-Quad

We do the ray-quad intersection test in local space.

Given a world space ray, represented by an origin o and a direction d, we convert it to local
space by applying to both the inverse of the quad’s model matrix. We use homogeneous
coordinates for both o and d: for o we use w=1, for d we use w=0. The w=0 for d makes it so
that d is not affected by translations. This is customary, since we don’t want to translate a
direction vector; translating it would change the direction.

We start by checking whether the ray intersects the plane m on which the quad lays. The
equation to use is
p.n+s=0

where p is a generic point, n is the plane’s normal and s is the plane’s offset from the origin of
the reference system. To find the intersection point, we plug the ray equation into the plane
equation
(o+td).n+s=0
By construction, the local space quad lies on plane z=0. Thus we know that n=(0,0,1) and s=0.
(o+td).(0,0,1)=0
o0.(0,0,1)+td.(0,0,1)=0
o,+td, =0
td, = -0,
t=-0,/d,
If d, # 0, then the intersection point exists. Since we have a ray, it must also be that t > 0,
otherwise the intersection would be behind o. If both these conditions are met, then the
intersection point q between the ray and the plane is given by plugging the t we found into the
ray equation.

{-0.5,+0.5,0) A (+0.5,+0.5,0)

Y

L
(-0.5,-0.5,0) (+0.5.-0.5,0)

Local space quad.

Things are not over yet: we also need to check whether q is inside the quad or not. By
construction, any point on the quad must have x € [-0.5,40.5] and y € [-0.5,+0.5]. If both
conditions are satisfied, then q is inside the quad. This is our intersection point.

We have found the intersection point in local space. We need to convert it to world space. To do
this we just transform it by the quad’s model matrix.

We also need to find the object’s normal at the point of intersection. In local space, the normal at
the point of intersection coincides with the plane’s normal: (0,0,1). We then transform it by the

quad’s normal matrix.

Ray-Box

We do the ray-box intersection test in local space.

We convert the ray to local space, exactly as we did for the ray-quad intersection test.

Y

Local space box.

By construction, the local space box is the AABB with extremes (-0.5,-0.5,-0.5) and
(+0.5,+0.5,+0.5). We use the slab method for finding the ray-box intersection.

The box is made out of three slabs. Each slab is defined by two parallel planes. Finding the
ray-slab intersection is trivial: we just perform two ray-plane intersections (look at the ray-quad
intersection section). If we are not in a degenerate case, these two intersection tests will yield
two parameters: t' and t”. Let t;, = min(t',t”) and .., = max(t',t”). Thus, the ray-slab intersection
will yield as a result an interval [t,, tma] Of parameters to plug into the ray equation that
represent the set of points laying on the ray that overlap the slab.

Having three slabs, one perpendicular to the x axis, one perpendicular to the y axis, and another
perpendicular to the z axis, we have three intervals to work with [*in, Tmaxds [Pmins Pmax @Nd [Erin,
t“nax- The ray intersects the box if and only if

[txmina tXmax] N [tymin’ tymax] N [tzmin’ tzmax] % 2.
If this is the case, let the interval [a,b] be the result of the intersection.

The interval [a,b] is the result of intersecting the ray and the AABB. For us, a valid intersection is
one given by a non negative t. Thus, we need to compute [a,b] N [0,+]. If the intersection is not
empty, let [t.n.tna] D€ the resulting interval. The intersection point between the ray and the
AABB is obtained by plugging t..,, into the ray equation.

We also want the surface’s normal at the intersection point. From the intersection point we
found, it is easy to know on which side of the box it lies, and thus our normal in local space.

We use the same logic we did in the ray-quad intersection test to convert our results from local
space to world space.

Rendering

Our rendering can be subdivided into three steps:
1. Rendering the cube shadow map of the point light.
2. Rendering the whole scene, with shadows, using the point light as the only light source.

3. For each virtual light, we render the whole scene, without shadows, using the virtual light
as the only light source.

Rendering the Cube Shadow Map

Cube shadow map.

The first step consists in rendering the cube shadow map that will be used to render the scene
with shadows. To do this, we need to render the scene six times, one for each side of the cube
map.

As we know, to render the scene, we need to set up a view matrix and a projection matrix. The
projection matrix we use is the same for all six sides of the cube: we use perspective projection
with a FOV of 90 degrees and an aspect ratio of 1. The aspect ratio of 1 is trivial: both sides of a
cube face have the same length. We use a FOV of 90 degrees so that the six frustums together
omnidirectionally capture the scene.

Contrary to what we do with the projection matrix, we need six view matrices, one for each side
of the cube. This is obvious: each face of the cube faces a different direction. We use the look-at
technique: the camera position is the point light position, the camera forward and up vectors
depend on the cube face we are rendering.

The vertex shader we use performs the usual computation of the clip space vertex position. It
also outputs the world space vertex position.

The pixel shader we use only writes to the depth buffer. The written depth is the world space
distance between the camera’s position and the fragment’s position. Before actually writing this

distance as depth, we need to scale it accordingly. This is because depth values get clipped on
the range [0,1]. Obviously, our distance doesn’t necessarily lie in this range. What we can do is
divide this distance by the value of the far plane used for building the projection matrix. This
scales it into the range [0,1].

Writing the world space distance as depth, instead of the actual fragment’s depth, allows us to

implement a straightforward way of doing comparisons with the shadow map samples, when
evaluating the lighting model.

Rendering the Point Light with Shadows

Scene lit from the point light, with shadows.

On the application side, there is nothing interesting about rendering the scene and lighting it
using the point light. We simply loop over each object and issue a draw call for it. The only thing
to note is that we directly write to the default color and depth buffers; we don’t use auxiliary
buffers to accumulate the contributions of the various lights.

The vertex shader we use performs the usual computation of the clip space vertex position. It
also outputs the world space vertex position and the vertex normal, transformed by the normal
matrix.

It's in the pixel shader where the fun happens. Let:
e p, be the object’s diffuse color.
e n be the fragment surface normal.
e | be the world space vector from the fragment’s position towards the point light’s position.
e L be the light emitted by the point light.

The fragment color is computed as follows

1N * pg/r * (1-s)*L*max(n .|, 0)
where:
e N is the number of particles we have used for the particle simulation.
e s € [0,1]is the shadow factor.

The interesting part is the way in which we compute the shadow factor. We first consider the
vector -l, that is, the world space vector going from the point light toward the fragment. We use
-1 to sample the shadow cube map, reading back distance d. We scale this distance by the value
representing the far plane used for the light's projection matrix. This undoes the mapping to [0,1]
we did when we built the shadow cube map. Now d is the proper world space distance between
the light and its closest point along direction -l. Then, we compare d with the length of -I, which
is the world space distance between the light and the fragment. If ||-l|| > d, then the fragment
must be shadowed, thus s=1. If ||-l|| < d, then the fragment must be lit, thus s=0.

This is not the full story. There are two problems we need to address: shadow acne and jagged
shadows.

Example of shadow acne.

The major cause of shadow acne is the fact that one shadow map texel may get sampled by
many fragments, each one generally having a different distance from the light source, compared
to the sampled distance. Thus, some of these fragments will be shadowed and others will be lit.
This is what gives origin to the banding effect of shadow acne. Moreover, the difference in
distance gets bigger, the more the light vector deviates from the surface normal.

To fix shadow acne, we either have to bias d or ||-I||. We choose to bias ||-l||. This means that,
instead of comparing ||-1|| and d, we compare ||-l||-bias and d.

The simplest thing we can do is use a static bias. The more shadow acne we have, the more we
increase the bias. With high enough values for the bias, it becomes apparent that shadows start
to shift from the objects that cast them. This is what’s called peter panning. Thus, choosing the
right bias is an act of balancing between avoiding the shadow acne and having as little peter
panning as possible.

Example of peter panning.

Using a static bias may be too limiting. This is even more so when we observe that the severity
of shadow acne may be different across a model, due to different surface normals and/or light
direction vectors. In this case, using a static bias, we need to choose a high enough value to
cover the most severe cases of shadow acne, even though for most of the mesh a smaller value
would have been sufficient. From here comes the idea of a dynamic bias.

Example of only using the dynamic bias.

We compute a dynamic bias value, based on the angle between | and n. The more I and n are
aligned, the less the bias we need. The more | and n deviate, the higher the bias we need. It is
easy to see that we get what we want by taking 1 -n . I.

It is interesting to note that we can’t just use a dynamic bias. When | and n are parallel, the bias
would be zero. In this case we would still have shadow acne. Thus, we combine both a static
bias b, and a dynamic bias by. We compute the bias as

bias = by + bynaxby
where by is Used as a scaling factor for b; it represents the maximum allowed dynamic bias.

Example of jagged shadows.

The other problem we face are jagged shadows. The cause is the limited resolution of shadow
maps. Resolution that, in general, is not high enough for shadows to look naturally smooth.
From anti-aliasing techniques, we know that jaggies can be mitigated by smoothing them using
some sort of filter. A very common filtering technique for shadow maps would be
percentage-closer filtering, PCF for short. PCF works by taking multiple samples of the shadow
map, using them for the shadow comparisons, and then computing the shadow factor as a
percentage of the number of samples that pass (or fail) the comparison.

Example of PCF.

Let:
e S be the number of cube shadow map samples we take.

® 0y 04, 0,, ..., 051 be S random offset vectors.
e Off be a scaling factor for the random offset vectors.

Instead of reading only one sample off the shadow cube map, we read S samples. Sample i is

given by the vector
-l + off * o,

For each sample we read, we compare it with ||-l||-bias. Every time the comparison tells us that
the fragment should be shadowed, we increment s by one. After comparing all the S samples,
we just need to normalize s. We do it by dividing it by S.

Rendering the Virtual Lights without Shadows

Left: Virtual Light 1 - Center: Virtual Light 2 - Right: Virtual Light 5.
The missing virtual lights have been skipped because they were irrelevant.

Left: Virtual Light 6 - Center: Virtual Light 7 - Right: Virtual Light 8.

Left: Virtual Light 9 - Center: Virtual Light 10 - Right: Virtual Light 11.

Left: Virtual Light 12 - Center: Virtual Light 13 - Right: Virtual Light 14.

Left: Virtual Light 15 - Center: Virtual Light 16 - Left: Virtual Light 17.

Virtual Light 18.

For every virtual light, we render the scene, without shadows, using the light as the only light
source. The vertex shader we use is the usual, and the pixel shader is the same as the one we
used for rendering the scene with the point light, obviously without the shadow mapping part.

The interesting thing here is how we accumulate the various renderings of the scene, using only
one color buffer and one depth buffer.

Since we have already rendered the scene, lighting it with the point light, the color buffer has
already been populated. Then, before rendering the scene with the virtual lights, we configure
the output merger stage: instead of writing the fragment’s color to the color buffer, we sum the
fragment’s color with the color in its corresponding texel of the color buffer. In this way, we are
summing the weighted (we divide by N inside the pixel shader) contributions of the various light
sources all together.

This is a good idea, but there is a catch. What do we do with the depth buffer? This buffer has
already been populated when the scene was rendered for the point light. If we were to clear it
every time we render a virtual light, we would get incorrect results. Imagine this scenario. We
issue a draw call for object A, which passes the depth test, and thus its fragments get summed
to the contents of the color buffer. Then we render object B, which occludes A. B passes the
depth test, and its fragments get summed to the contents of the color buffer. The color buffer
now contains incorrect results. This is because we must only sum the colors of the fragments
that we know for certain are visible to the camera, once the whole scene has already been
rendered.

From the previous discussion, it is obvious that we cannot clear the depth buffer. What if we
leave things as is? If we keep the contents of the depth buffer, we already know which
fragments are already visible: exactly those whose depth is equal to the depth in the
corresponding depth texel. This is what we want. We are on the right track. But we still get
incorrect results. This is because the comparison function used by default for depth testing is
“‘less than”. This means that the fragments that pass the depth test are only those whose depth
is less than the corresponding depth in the depth buffer; otherwise they get discarded. Since in
the depth buffer we are storing the depths of the closest fragments to the camera, all the

fragments we render cannot pass the depth test, and thus get thrown away. In this case, we
don’t write anything to the color buffer. We fix this by changing the comparison function with
“‘equal to”. Now, the fragments that pass the depth test are only those whose depth is equal to
the corresponding depth in the depth buffer. The fragments that pass the depth test are thus
exactly those fragments that are visible to the camera and thus we sum their colors to the
corresponding contents of the color buffer.

Performance

@ Particle Simulation Time (ms) @ Rendering Time (ms)
30

20

ms

200 400 600 800 1000

N

There are mainly two points of interest regarding the performance of instant radiosity: the
particle simulation and the various renderings of the scene.

Asymptotic Time Complexity for the Particle Simulation

Here we study the simulation’s complexity. Since the simulation is done through a series of
ray-object intersections, we measure its complexity by counting how many intersection tests we
perform.

We start with N particles. We shoot them into the scene. Each particle being shot is
implemented as a ray-object intersection test, for every object in the scene. Then, the first LpN |
particles continue their travel, and so on, until we reach simulation step j such that Lp'N1 is zero.

Having B objects in the scene, the number of ray-object intersection tests performed by

simulation step 0 are B * N. The number of ray-object intersection tests performed by simulation

step 1 are B * LpN . And so on. Thus, the total number of tests is
B*N+B*LpN|+B*Lp?Nl+B*Lp3NI+...

This sum can be written as

j—1 o) 0 [e) o)

k k k k k 1
Y BlpN =X BlpN=BXY [pN <BY pN=BNYp =BNT—
k=0 k=0 k=0 k=0 k=0

Hence, the simulation’s time complexity is
0(131v1—ip

Improving the Particle Simulation

In our case, we opted for a brute force approach, when doing ray casts. However, for complex
scenes, it would not be viable to do so. Surely, a spatial data structure should be used to speed
up such queries. A BVH seems the most appropriate solution. There is also ample literature on
using a BVH to speed up ray casts.

Mind that, for instant radiosity, we don’t really need to find the precise intersection point between
a ray and an object’s mesh. This means that we don’t really need to go at a mesh primitive level.
Stopping at the object’'s OBB would be enough for most cases. For the intersection, we just
need a position and a normal that are good enough.

Asymptotic Time Complexity for the Rendering

Here we study the complexity of rendering our scene. When talking about rendering, a good
metric to use is the number of draw calls performed to render the frame. A draw call is an
expensive operation since it requires activating the entire graphics pipeline.

Suppose we have B objects in the scene. For rendering the shadow cube map, we render the
scene six times, each time drawing all the B objects in the scene. This takes B * 6 draw calls.

For rendering the scene lit by the point light, we submit B draw calls.
For rendering the scene lit by each virtual light source we submit M * B draw calls.

At the end, the number of performed draw calls is
6B + B+ MB = (7 + M)B

Hence, the rendering time complexity is
O(MB)

Improving the Rendering

In our case, we took to the letter the idea of rendering the scene for each light source. At the
end of the day, this is what Keller states.

Nonetheless, things can be made much faster by decreasing the number of draw calls. We can
do so by batching together, into a single pixel shader invocation, the computation of more than
one contribution to the lighting from the virtual lights.

We would do this by uploading to the pixel shader, not a single virtual light, but m virtual lights
altogether. Then, when running the shader, we would loop on the uploaded virtual lights, and for
each one, compute its contribution to the lighting. The sum of these contributions would then be
divided by N.

This brings the number of draw calls to (7 + %)B, which is still O(MB), but the multiplicative

constant may be much lower, depending on the size of m. This depends on how big of a buffer
we can pass to the pixel shader. Usually we have a guaranteed 128MB of data for this purpose.
Supposing we use 64 bytes to represent a virtual light, which is more than enough, m could
roughly be two millions.

Considerations and Future Work

It has been very fun for us to work on this project. Implementing instant radiosity has allowed us
to dip our toes into global illumination algorithms, without being overly complex. Moreover,
despite its simplicity, we still managed to achieve good looking results. As it is, we have shown
the feasibility of the technique for real time scenarios, at least for simple scenes. Its feasibility
has yet to be discussed for more complex scenes. We have also illustrated how to implement
this technique using a modern graphics API (DirectX 11).

We would like to suggest two routes, for readers interested in further developing this work.

The first route consists in implementing better logic for the placement of the virtual lights. In
particular, we only care about virtual lights that influence the part of the scene we are looking at.

The second route stems from the following observation: the more a particle bounces, the more
the light it carries gets attenuated. Experimentally, even a small number of bounces almost
entirely disperses all the particle’s light. This means that the virtual lights spawned from further
bounces are mostly irrelevant. One could even ignore bounces and just stop at the first surface
point that the particle hits. Finding these points can be done by rendering the scene from the
point light’'s POV: this is the idea behind reflective shadow maps.

Bibliography

Keller, Alexander. "Instant radiosity." Proceedings of the 24th annual conference on Computer
graphics and interactive techniques. 1997.

Appendix A: Libraries

The libraries used for this project are:

DirectX 11, feature level 11.0.

DXGI, v1.3.

Dear imgui, v1.91.9b.

DirectX Toolkit's Simple Math, March 2025 release.

Appendix B: Test Machine Specs

These are the test machine’s specs:
e CPU: AMD Ryzen 5 5600X 6-cores.
e GPU: Nvidia GeForce RTX 3060 Ti.
e RAM: 32GB 3000MHz.

	Virtual Point Lights
	Introduction
	Keller’s Instant Radiosity
	Our Version of Keller’s Instant Radiosity
	Implementation
	Particle Simulation
	Intersection Tests
	Ray-Quad
	Ray-Box

	Rendering
	Rendering the Cube Shadow Map
	Rendering the Point Light with Shadows
	Rendering the Virtual Lights without Shadows

	Performance
	Asymptotic Time Complexity for the Particle Simulation
	Improving the Particle Simulation
	Asymptotic Time Complexity for the Rendering
	Improving the Rendering

	Considerations and Future Work
	Bibliography
	Appendix A: Libraries
	Appendix B: Test Machine Specs

